跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/28 00:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林祐祺
研究生(外文):Lin, Yu-Chi
論文名稱:高科技工業園區排放極細顆粒的金屬元素與粒徑分析
論文名稱(外文):Ultrafine Particles Size Distribution and their Metallic Elements emitted from a High-Tech Industrial Park
指導教授:張鎮南張鎮南引用關係陳鶴文陳鶴文引用關係
指導教授(外文):Chang,Cheng-NaChen, Ho-Wen
口試委員:楊錫賢張士昱彭彥彬
口試委員(外文):Yang,Hsi-HsienChang,Shih-YuPeng,Yen-Pin
口試日期:2014-05-23
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:91
中文關鍵詞:高科技排放重金屬粒徑分佈聚類群集分析期望值理論
外文關鍵詞:High-tech emissionHeavy metalSize distributionHierarchical Cluster Analysis (HCA)Expected value
相關次數:
  • 被引用被引用:1
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
中部科學園區(中科)主要是製造半導體、電子和電子外圍設備的高科技園區,而本研究的目標是鑑定中科廠商排放細微顆粒的特性。本研究從2013年1月到9月使用八階微孔均勻沉降微粒採樣器 (MOUDI)去收集沉降微粒中20種金屬(Al, Fe, Na, Mg, Ca, K, In, Mo, Zn, Cr, Cu, Pb, Mn, Ni, Sn, V, Cd, As, Ga and Ge)。
本研究採用下列5種方法找尋高科技產業排放重金屬元素成分: 1.金屬濃度的比較2.累積濃度曲線 3.相關性分析 4.聚類分析 5.期望值理論。1. 經由濃度與其他研究的比較得知Ni (2.18 ng/m3), As (0.16 ng/m3), Ge (0.01 ng/m3), Ga (0.03 ng/m3), Cd (0.12 ng/m3)等金屬的濃度明顯高於其他研究地區。 2.累積濃度曲線將金屬的波峰特性分為三個不同種類:第一種是波峰主要出現在粒徑5.6μm的金屬(Al, Fe, Na, Mg, Ca)、第二種是在所有粒徑下都有可能出現波峰的金屬(K, In, Mo, Zn, Cr, Cu, Pb, Mn, Ni, Sn) 、第三種是主要波峰出現在極細粒徑(小於1μm)的金屬(V, Cd, As, Ga, Ge)。3.相關性分析:可以提供金屬與金屬間是否擁有相似的排放來源。在上風與下風處中,Ga-Ge-As-Cd明顯地有極高的相關性。且移動性元素中,Mn-Ni、Pb-Zn-In-Cr在上風處中有高度相關性,但是在下風處Mn-Ni、Zn-Cu和Pb-As-Cd-Zn-K-Cr有高度的相關性,最後地殼性元素不論在上風或下風處都有高度的相關性。4.使用聚類群集分析(HCA)把金屬分類,可以分為三個群集:第一是地殼性群集、第二是移動性群集、最後是固定性群集。在上風與下風處Al, Fe, Na, Mg, Ca都在同一個群集內,這些金屬都是來自地殼居多。然而上風處的固定性群集有V, As, Ni, Pb, Ga, Ge,但是到了下風處固定性群集的金屬有Ga, Ge, V, As, Cd, Pb, Mn, Ni。上風處的移動性群集有Mn, Cd, Zn, K, Sn, Cr, In, Cu, Mo,然而在下風處移動性群集的金屬有Zn, K, Sn, Cr, In, Cu, Mo。將各元素的分析出現次數彙整後,Ga, Cd 和As出現次數都是5次為最高。5.最後將全部分析方式所獲得的高再現性之元素: As, Ga, Cd進行期望值理論去模擬可能汙染方向推論,其結果顯示As及Ga可能是此區域高科技產業的汙染物,但Cd在期望值結果中,東海採樣點北方沒有貢獻量,所以推論此地區高科技產業與Cd的相關性不高。
先前的研究使用高流量採樣器,研究指出在PM2.5和PM10中的As, Cd, Ge, Pb, Sn, Zn可以當作高科技園區的可能指標汙染物,然而本研究使用MOUDI去鑑定更細的粒狀汙染物,利用期望值理論去確定哪個方向是主要的可能來源,其結果可以解釋在目前極細顆粒中As和Ga是此地區高科技產業可能的汙染物,目前結果顯示高科技產業對Cd的貢獻量並不高。

The Central Taiwan Science Park (CTSP), which consisting of manufacture of semiconductors, electronics and electrical peripherals, was the research target of identifying the characteristics of ultrafine particles mission. This study used a 8-stage micro-orifice uniform deposit impactor (MOUDI) sampler to collect the size distribution of various heavy metals (Al, Fe, Na, Mg, Ca, K, In, Mo, Zn, Cr, Cu, Pb, Mn, Ni, Sn, V, Cd, As, Ga and Ge) in airborne particles from January to September, 2013.
This study used 1.Comparsion concentration of heavy metals with other researches 2. Accumulation curve 3.Correlation analysis 4. HCA 5. Expected value. 1. Comparing with other researches, it indicated that concentration of Ni (2.18 ng/m3), As (0.16 ng/m3), Ge (0.01 ng/m3), Ga (0.03 ng/m3) and Cd (0.12 ng/m3) were both higher other researches. 2. The characteristic size peak distributions was identified by accumulation mode curve and could be classified into three categories: (i) main peak at 5.6μm, (Al, Fe, Na, Mg and Ca), (ii) peak spread around fine, intermediate and coarse modes (K, Zn, In, Mo, Cr, Cu, Pb, Mn, Ni and Sn), and (iii) metals mass peak mainly less than 1μm (V, Cd, As, Ga and Ge). 3. The correlation analysis could both tell which metal had the similar sources and its characteristic of pollution. Both in upwind and in downwind sites, the elements: Ga-Ge-As-Cd observed having the high correlation in two-tailed significant level analysis. The mobile sources elements Mn-Ni, Pb-Zn-In-Cr in upwind had high correlation, while in downwind Mn-Ni, Zn-Cu and Pb-As-Cd-Zn-K-Cr had high correlation while the crustal metals had high correlation in both upwind and in downwind samples. 5. It used hierarchical cluster analysis (HCA) to classify the metals, it could divide three different clusters: (i) crustal cluster, (ii) mobile cluster, (iii) station cluster. In both upwind and downwind samples had Al, Fe, Na. Mg and Ca within the same cluster, those elements both were emit from crustal, so the cluster was the crustal sources while the cluster of station sources had V, As, Ni, Pb, Ga and Ge in upwind, but the cluster of station sources had Ga, Ge, V, As, Cd, Pb, Mn and Ni in downwind. The cluster of mobile sources had Mn, Cd, Zn, K, Sn, Cr, In, Cu and Mo in upwind while the cluster of mobile sources had Cr, Sn, In, K, Cu, Mo and Zn in downwind.5. Finally, combining all the methods, it could realize the metals most frequent were As, Ga and Cd. Using expected value theory to identify the possible sources from high-tech industries in this area.
Previous study used high-volume sampler and indicated that As, Cd, Ge, Pb, Sn and Zn were high-tech park indicator emission in PM2.5 and PM10, while in this study, it used MOUDI to identify the finer particle matter sources and the expected value could show that which direction was the main sources. The results of expected value could explain the UF was the significant pollutants and concluded that Ga and As were the main pollutants in the target area.

LIST OF FIGURES V
Abstract VII
Chapter 1. Introduction 1
Chapter 2. Literature review 7
2.1 Particulate matters in the air 7
2.2 Heavy metals 11
2.3 Size distribution 16
2.4 Hierarchical Cluster Analysis 19
2.5 Expectations theory 21
Chapter 3. Material and Methods 23
3.1 The sampling plan 23
3.1.1 The sampling area 23
3.1.2 The sampling time and frequency 26
3.2 Sampling equipment 26
3.3 Chemical analysis 28
3.3.1 The process of sample pretreatment 28
3.3.2 Analyze the Element concentration 28
3.4 Analysis method of particulate matters (PM) 29
3.4.1 Matrix of correlation analysis 29
3.4.2 Hierarchical cluster analysis (HCA) 30
3.4.3 Size distribution 31
3.4.4 Wind division and event probability estimation 32
Chapter 4. Results and Discussion 34
4.1 Chemical composition analysis 34
4.2 Size distribution 40
4.2.1 Emission peak patterns of particulate 40
4.2.2 Elemental Size Distributions 44
4.3 Correlation Analysis 47
4.4 Multivariate analysis (hierarchical cluster analysis, HCA) 51
4.5 Source apportionment 56
4.6 Summary of metals 61
Chapter 5. Conclusions and suggestions 62
5.1. Conclusions 62
5.2. Suggestions 63
References 64

Al-Khlaifat, A.L., Al-Khashman, O.A., 2007. Atmospheric heavy metal pollution in Aqaba city, Jordan, using Phoenix dactylifera L. leaves. Atmospheric Environment 41, 8891-8897.
Allen, A.G., Nemitz, E., Shi, J.P., Harrison, R.M., Greenwood, J.C., 2001. Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmospheric Environment 35, 4581-4591.
Apeagyei, E., Bank, M.S., Spengler, J.D., 2011. Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmospheric Environment 45, 2310-2323.
Ayres, R.U., Méndez, G.V., Peiró, L.T., 2014. Chapter 4 - Recycling Rare Metals, in: Worrell, E., Reuter, M.A. (Eds.), Handbook of Recycling. Elsevier, Boston, pp. 27-38.
Bu-Olayan, A.H., Thomas, B.V., 2012. Dispersion model on PM(2).(5) fugitive dust and trace metals levels in Kuwait Governorates. Environ Monit Assess 184, 1731-1737.
Cancio, J.L., Sánchez, A.D., Alemán, P.S., 2014. Metallic species in ambient air particles of Canary Islands. Soluble fraction in total suspended matter. AFINIDAD 70.
Castillo, S., de la Rosa, J.D., Sánchez de la Campa, A.M., González-Castanedo, Y., Fernández-Camacho, R., 2013. Heavy metal deposition fluxes affecting an Atlantic coastal area in the southwest of Spain. Atmospheric Environment 77, 509-517.
Chaisakul, P., Marris-Morini, D., Isella, G., Chrastina, D., Rouifed, M.S., Frigerio, J., Vivien, L., 2013. Ge quantum well optoelectronic devices for light modulation, detection, and emission. Solid-State Electronics 83, 92-98.
Chein, H., Hsu, Y., Aggarwal, S., Chen, T., Huang, C., 2006. Evaluation of arsenical emission from semiconductor and opto-electronics facilities in Hsinchu, Taiwan. Atmospheric Environment 40, 1901-1907.
Chen, B., Stein, A.F., Maldonado, P.G., Sanchez de la Campa, A.M., Gonzalez-Castanedo, Y., Castell, N., de la Rosa, J.D., 2013a. Size distribution and concentrations of heavy metals in atmospheric aerosols originating from industrial emissions as predicted by the HYSPLIT model. Atmospheric Environment 71, 234-244.
Chen, H., Lu, X., Li, L.Y., 2014. Spatial distribution and risk assessment of metals in dust based on samples from nursery and primary schools of Xi'an, China. Atmospheric Environment 88, 172-182.
Chen, S.-C., Hsu, S.-C., Tsai, C.-J., Chou, C.C.K., Lin, N.-H., Lee, C.-T., Roam, G.-D., Pui, D.Y.H., 2013b. Dynamic variations of ultrafine, fine and coarse particles at the Lu-Lin background site in East Asia. Atmospheric Environment 78, 154-162.
Contini, D., Cesari, D., Genga, A., Siciliano, M., Ielpo, P., Guascito, M.R., Conte, M., 2014. Source apportionment of size-segregated atmospheric particles based on the major water-soluble components in Lecce (Italy). The Science of the total environment 472, 248-261.
Díaz-Robles, L.A., Fu, J.S., Vergara-Fernández, A., Etcharren, P., Schiappacasse, L.N., Reed, G.D., Silva, M.P., 2014. Health risks caused by short term exposure to ultrafine particles generated by residential wood combustion: A case study of Temuco, Chile. Environment International 66, 174-181.
de Santana, F.A., Barbosa, J.T.P., Matos, G.D., Korn, M.G.A., Ferreira, S.L.C., 2013. Direct determination of gallium in bauxite employing ICP OES using the reference element technique for interference elimination. Microchemical Journal 110, 198-201.
Dillner, A.M., Schauer, J.J., Christensen, W.F., Cass, G.R., 2005. A quantitative method for clustering size distributions of elements. Atmospheric Environment 39, 1525-1537.
Dore, A.J., Hallsworth, S., McDonald, A.G., Werner, M., Kryza, M., Abbot, J., Nemitz, E., Dore, C.J., Malcolm, H., Vieno, M., Reis, S., Fowler, D., 2014. Quantifying missing annual emission sources of heavy metals in the United Kingdom with an atmospheric transport model. The Science of the total environment 479-480, 171-180.
Duan, J., Tan, J., 2013. Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies. Atmospheric Environment 74, 93-101.
Fang, G.-C., Huang, W.-J., Chen, J.-C., Huang, J.-H., Huang, Y.-L., 2011a. Study of Ambient Air Particle-Bound As(p) and Hg(p) in Dry Deposition, Total Suspended Particulates (TSP) and Seasonal Variations in Central Taiwan. Environmental Forensics 12, 7-13.
Fang, G.-C., Lin, C.-C., Huang, J.-H., Huang, Y.-L., 2011b. Measurement of Ambient Air Arsenic(As) Pollutant Concentration and Dry Deposition Fluxes in Central Taiwan. Aerosol and Air Quality Resarch 11, 218-229.
Fang, G.-C., Wu, Y.-S., Rau, J.-Y., Huang, S.-H., 2006. Traffic aerosols (18 nm≦particle size≦18 μm) source apportionment during the winter period. Atmospheric Research 80, 294-308.
Fang, G.C., Huang, Y.L., Huang, J.H., 2010. Study of atmospheric metallic elements pollution in Asia during 2000-2007. Journal of hazardous materials 180, 115-121.
Fang, G.C., Zhang, L., Huang, C.S., 2012. Measurements of size-fractionated concentration and bulk dry deposition of atmospheric particulate bound mercury. Atmospheric Environment 61, 371-377.
Fowler, B.A., Nordberg, G.F., Nordberg, M., Friberg, L., 2011. Handbook on the Toxicology of Metals. Elsevier Science.
Fu, J., Zhao, C., Luo, Y., Liu, C., Kyzas, G.Z., Luo, Y., Zhao, D., An, S., Zhu, H., 2014. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of hazardous materials 270C, 102-109.
Gunawardena, J., Egodawatta, P., Ayoko, G.A., Goonetilleke, A., 2013. Atmospheric deposition as a source of heavy metals in urban stormwater. Atmospheric Environment 68, 235-242.
Hanedar, A., Alp, K., Kaynak, B., Avsar, E., 2013. Toxicity evaluation and source apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) at three stations in Istanbul, Turkey. The Science of the total environment.
Haynes, H., Asmatulu, R., 2013. Chapter 7 - Nanotechnology Safety in the Aerospace Industry, in: Asmatulu, R. (Ed.), Nanotechnology Safety. Elsevier, Amsterdam, pp. 85-97.
Hays, M.D., Cho, S.-H., Baldauf, R., Schauer, J.J., Shafer, M., 2011. Particle size distributions of metal and non-metal elements in an urban near-highway environment. Atmospheric Environment 45, 925-934.
Hinds, W.C., 1999. Aerosol Technology. Wiley, New York.
Hsu, S.C., Hsieh, H.L., Chen, C.P., Tseng, C.M., Huang, S.C., Huang, C.H., Huang, Y.T., Radashevsky, V., Lin, S.H., 2011. Tungsten and other heavy metal contamination in aquatic environments receiving wastewater from semiconductor manufacturing. Journal of hazardous materials 189, 193-202.
Hu, C.-W., Pan, C.-H., Huang, Y.-L., Wu, M.-T., Chang, L.W., Wang, C.-J., Chao, M.-R., 2006. Effects of arsenic exposure among semiconductor workers: A cautionary note on urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine. Free Radical Biology and Medicine 40, 1273-1278.
Huang, Y., Hsu, L., Chang, Y., 2011. Comprehensive characterization of ambient nanoparticles collected near an industrial science park: Particle size distributions and relationships with environmental factors. Journal of Environmental Sciences 23, 1334-1341.
Ivanoff, C.S., Ivanoff, A.E., Hottel, T.L., 2012. Gallium poisoning: A rare case report. Food and Chemical Toxicology 50, 212-215.
Jha, M.K., Kumar, V., Jeong, J., Lee, J.-c., 2012. Review on solvent extraction of cadmium from various solutions. Hydrometallurgy 111–112, 1-9.
Justino, C.I.L., Rocha-Santos, T.A., Duarte, A.C., 2011. Sampling and characterization of nanoaerosols in different environments. TrAC Trends in Analytical Chemistry 30, 554-567.
Kaufmann, L., Rousseeuw, P., 1990. Finding groups in data. New York: J. Wiley & Sons.
Kittler, J., Illingworth, J., 1986. Minimum error thresholding. Pattern recognition 19, 41-47.
Lü, S., Zhang, R., Yao, Z., Yi, F., Ren, J., Wu, M., Feng, M., Wang, Q., 2012. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere. Journal of Environmental Sciences 24, 882-890.
Lin, C.-C., Chen, S.-J., Huang, K.-L., Hwang, W.-I., Chang-Chien, G.-P., Lin, W.-Y., 2005. Characteristics of Metals in Nano/Ultrafine/Fine/Coarse Particles Collected Beside a Heavily Trafficked Road. Environmental Science & Technology 39, 8113-8122.
Lotarev, S.V., Lipatiev, A.S., Golubev, N.V., Ignat’eva, E.S., Usmanova, L.Z., Priseko, Y.S., Lepekhin, N.M., Paleari, A., Sigaev, V.N., 2014. Space-selective enhancement of blue photoluminescence in gallium germanosilicate glass through laser-induced nanostructuring. Materials Letters 122, 174-177.
Lu, H.-C., Chang, C.-L., Hsieh, J.-C., 2006. Classification of PM10 distributions in Taiwan. Atmospheric Environment 40, 1452-1463.
Lu, T., Huang, Z., Cheung, C.S., Ma, J., 2012. Size distribution of EC, OC and particle-phase PAHs emissions from a diesel engine fueled with three fuels. Science of The Total Environment 438, 33-41.
Majestic, B.J., Turner, J.A., Marcotte, A.R., 2012. Respirable antimony and other trace-elements inside and outside an elementary school in Flagstaff, AZ, USA. Science of The Total Environment 435–436, 253-261.
Malley, C.S., Braban, C.F., Heal, M.R., 2014. The application of hierarchical cluster analysis and non-negative matrix factorization to European atmospheric monitoring site classification. Atmospheric Research 138, 30-40.
Manoli, E., Voutsa, D., Samara, C., 2002. Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmospheric Environment 36, 949-961.
Marple, V., Rubow, K., Ananth, G., Fissan, H.J., 1986. Micro-orifice uniform deposit impactor. Journal of Aerosol Science 17, 489-494.
Meza-Figueroa, D., De la O-Villanueva, M., De la Parra, M.L., 2007. Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmospheric Environment 41, 276-288.
Mohiuddin, K., Strezov, V., Nelson, P.F., Stelcer, E., 2013. Characterisation of trace metals in atmospheric particles in the vicinity of iron and steelmaking industries in Australia. Atmospheric Environment.
Montagne, D., Hoek, G., Nieuwenhuijsen, M., Lanki, T., Siponen, T., Portella, M., Meliefste, K., Brunekreef, B., 2014. Temporal associations of ambient PM2.5 elemental concentrations with indoor and personal concentrations. Atmospheric Environment 86, 203-211.
Mooibroek, D., Schaap, M., Weijers, E., Hoogerbrugge, R., 2011a. Source apportionment and spatial variability of PM< sub> 2.5 using measurements at five sites in the Netherlands. Atmospheric Environment 45, 4180-4191.
Mooibroek, D., Schaap, M., Weijers, E.P., Hoogerbrugge, R., 2011b. Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands. Atmospheric Environment 45, 4180-4191.
Morawska, L., He, C., Hitchins, J., Gilbert, D., Parappukkaran, S., 2001. The relationship between indoor and outdoor airborne particles in the residential environment. Atmospheric Environment 35, 3463-3473.
Mutlu, A., Lee, B.-K., Park, G.-H., Yu, B.-G., Lee, C.-H., 2012. Long-term concentrations of airborne cadmium in metropolitan cities in Korea and potential health risks. Atmospheric Environment 47, 164-173.
Niu, J., Rasmussen, P.E., Hassan, N.M., Vincent, R., 2010. Concentration distribution and bioaccessibility of trace elements in nano and fine urban airborne particulate matter: influence of particle size. Water, Air, & Soil Pollution 213, 211-225.
Ntziachristos, L., Ning, Z., Geller, M.D., Sheesley, R.J., Schauer, J.J., Sioutas, C., 2007. Fine, ultrafine and nanoparticle trace element compositions near a major freeway with a high heavy-duty diesel fraction. Atmospheric Environment 41, 5684-5696.
Peeters, J., Martinelli, J., 1989. Hierarchical cluster analysis as a tool to manage variation in germplasm collections. Theoretical and applied genetics 78, 42-48.
Phares, D.J., Rhoads, K.P., Johnston, M.V., Wexler, A.S., 2003. Size‐resolved ultrafine particle composition analysis 2. Houston. Journal of Geophysical Research: Atmospheres (1984–2012) 108.
Sönmezoğlu, S., Akın, S., 2012. High performance GaAs metal-insulator–semiconductor devices using TiO2 as insulator layer. Current Applied Physics 12, 1372-1377.
Schwartz, J., 1994. Total suspended particulate matter and daily mortality in Cincinnati, Ohio. Environmental Health Perspectives 102, 186.
Song, F., Gao, Y., 2011. Size distributions of trace elements associated with ambient particular matter in the affinity of a major highway in the New Jersey–New York metropolitan area. Atmospheric Environment 45, 6714-6723.
Spurny, K.R., 1998. On the physics, chemistry and toxicology of ultrafine anthropogenic, atmospheric aerosols (UAAA): new advances. Toxicology Letters 96–97, 253-261.
Sun, F., Wen, D., Kuang, Y., Li, J., Li, J., Zuo, W., 2010. Concentrations of heavy metals and polycyclic aromatic hydrocarbons in needles of Masson pine (Pinus massoniana L.) growing nearby different industrial sources. Journal of Environmental Sciences 22, 1006-1013.
Suzuki, Y., Watanabe, I., Oshida, T., Chen, Y.-J., Lin, L.-K., Wang, Y.-H., Yang, K.-C., Kuno, K., 2007. Accumulation of trace elements used in semiconductor industry in Formosan squirrel, as a bio-indicator of their exposure, living in Taiwan. Chemosphere 68, 1270-1279.
Szopka, K., Karczewska, A., Kabała, C., 2011. Mercury accumulation in the surface layers of mountain soils: A case study from the Karkonosze Mountains, Poland. Chemosphere 83, 1507-1512.
Taiwo, A.M., Beddows, D.C., Shi, Z., Harrison, R.M., 2014. Mass and number size distributions of particulate matter components: Comparison of an industrial site and an urban background site. The Science of the total environment 475, 29-38.
Wang, F., Chen, D.S., Cheng, S.Y., Li, J.B., Li, M.J., Ren, Z.H., 2010. Identification of regional atmospheric PM10 transport pathways using HYSPLIT, MM5-CMAQ and synoptic pressure pattern analysis. Environmental Modelling & Software 25, 927-934.
Wang, X., Sato, T., Xing, B., Tamamura, S., Tao, S., 2005. Source identification, size distribution and indicator screening of airborne trace metals in Kanazawa, Japan. Journal of Aerosol Science 36, 197-210.
White, R.R., Hardaway, C.J., Richert, J.C., Sneddon, J., 2012. Selenium–lead interactions in crawfish (Procambrus clarkii) in a controlled laboratory environment. Microchemical Journal 102, 91-114.
Wiseman, C.L.S., Zereini, F., 2014. Characterizing metal(loid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany using simulated lung fluids. Atmospheric Environment 89, 282-289.
Yang, T., Liu, Q., Li, H., Zeng, Q., Chan, L., 2010. Anthropogenic magnetic particles and heavy metals in the road dust: Magnetic identification and its implications. Atmospheric Environment 44, 1175-1185.
Zahra, A., Hashmi, M.Z., Malik, R.N., Ahmed, Z., 2014. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah--feeding tributary of the Rawal Lake Reservoir, Pakistan. The Science of the total environment 470-471, 925-933.
Zhao, Y., Zhang, J., Liu, S., Gao, Y., Yang, X., Leck, K.S., Abiyasa, A.P., Divayana, Y., Mutlugun, E., Tan, S.T., Xiong, Q., Demir, H.V., Sun, X.W., 2014. Transition metal oxides on organic semiconductors. Organic Electronics 15, 871-877.
Zhou, S., Yuan, Q., Li, W., Lu, Y., Zhang, Y., Wang, W., 2014. Trace metals in atmospheric fine particles in one industrial urban city: Spatial variations, sources, and health implications. Journal of Environmental Sciences 26, 205-213.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊