跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/04 00:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭瀚芃
研究生(外文):Hah-Peng Hsiao
論文名稱:磁性奈米碳管之製備及其應用於水中污染物之吸附研究
論文名稱(外文):Preparation of Magnetic Carbon Nanotubes and Their Application on Adsorption Removal of Aqueous Contaninants
指導教授:張瓊芬張瓊芬引用關係
指導教授(外文):Chiung-Fen Chang
口試委員:張慶源官文惠劉雨庭秦靜如張瓊芬
口試委員(外文):Ching-Yuan ChangWen-Hui KuanYu-Ting LiuChing-Ju ChinChiung-Fen Chang
口試日期:2014-07-24
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:84
中文關鍵詞:奈米碳管磁性競相吸附腐植酸砷酸根離子
外文關鍵詞:AdsorptionCNTshumic acidarsenic acidcompetitive adsorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:322
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管為一種具高比表面積、高應用潛力之吸附材料,但其受限於表面特性導致在水相中分散不易,且造價高昂,若無法有效且快速自異相中回收再利用,將使其在工業應用上的困難性大大增加,此因,本研究利用共沉澱法及醯胺化,直接或間接對商用奈米碳管賦予磁性,並選定一種新興污染物(emerging contaminants)-布洛芬(Ibuprofen)為去除標的,除進行材料對於標的污染物的吸附去除以外,亦嘗試在水中加入自然水體中常見之腐植酸,以及生活污水中常見之化學物質-苯酚(Phenol),另外為了試驗以共沉澱法直接批覆上Fe3O4是否具有其他新的去除效能,亦導入地下水常見之砷的產物-砷酸根離子進行去除實驗。材料特性分析利用超導量子干涉磁量儀、傅立葉紅外線光譜儀、穿透式電子顯微鏡、X光單晶繞射儀、熱重分析儀、比表面積分析儀進行;並將吸附實驗之結果利用擬一階、擬二階動力方程式模擬四種碳材對於四種污染物的吸附行為。結果顯示,以共沉澱法及醯胺化製備之磁性奈米碳管其飽和磁化強度分別為30.4及13.6 emu g-1;熱重分析結果顯示,本研究使用之商用奈米碳管其純度大於等於99%,且經過共沉澱法合成上Fe3O4後,其熱穩定性降低,殘存質量百分比顯示合成上之非碳管部分所佔的質量分別為40%及醯胺化製備的約略37%;吸附動力之模擬階以擬二階為較佳之模擬動力式,且Langmuir isotherm與Freundlich isotherm之等溫吸附模擬以Langmuir為較佳。最後使用布洛芬對酚、腐植酸進行競相吸附、共沉澱法所製備之磁性奈米碳管則以腐植酸、砷酸進行競相吸附之探討。
Adsorption is common process used for the removal of environmental contaminants in wastewater treatment and industrial treatment process. Recently, carbon nanotubes (CNTs) have been attracting much attention and applied in adsorption process due to the unique properties. Original CNTs favor the sorption of hydrophobic aromatic compounds from the aquatic solutions due to the p-p interaction between aromatic molecules and the grapheme sheets. After oxidation and functionalization of CNTs, the hydrophilic property increases due to the creation of the larger number of oxygen-containing functional groups (–OH, -C=O and –COOH) on the external surface so as to be possibly applied for the adsorption of metal ions and cationic organic compounds from the solutions. However, the size of CNTs is about nano-sized scale so as to result in the high drop pressure in the fixed column, which limits the application of CNTs. Magnetic CNTs (mCNTs) have advantages of more contact areas between analytes and carbon nanotubes, simple magnetic separation, and that the filtration is not needed, so as to possess high potential applications on the adsorptive removal of aquatic contaminants. In this study, mCNTs based on the commercial multi-walled carbon nanotubes (MWCNTs) have been synthesized by means of chemical coprecipitation and amidation processes, respectively. The physicochemical properties of resulting materials were characterized by SEM, FTIR, SQUID and TGA. Furthermore, the resulting mCNTs were used as adsorbents for removal of humic acid and arsenic acid from aqueous solutions. The adsorption behaviour of single and mixture target compounds were also investigated. The obtained mCNTs are proved to possess high adsorption ability for removal of aquatic contaminants and to be easily separated by a simple magnet.
中文摘要…………………………………………… Ⅰ
英文摘要…………………………………………… Ⅱ
目錄………………………………………………… Ⅲ
圖目錄……………………………………………… Ⅵ
表目錄……………………………………………… XI
第一章 緒論 ………………………………………… 1
1.1 研究背景………………………………………… 1
1.2 研究目的………………………………………… 2
1.3 研究流程………………………………………… 3
第二章 文獻回顧 …………………………………… 5
2.1 奈米碳管之簡介………………………………… 5
2.1.1 基本特性……………………………………… 5
2.1.2 奈米碳管之合成方法………………………… 8
2.1.3 奈米碳管的改質方法………………………… 8
2.2 布洛芬(IBU)之簡介 ………………………… 9
2.3 砷酸之簡介 …………………………………… 10
2.3.1 砷的水化特性 ……………………………… 11
2.4 腐植酸之簡介 ………………………………… 13
2.5 吸附理論 ……………………………………… 14
2.5.1 吸附動力理論 ……………………………… 15
2.5.2 等溫吸附方程式 …………………………… 17
第三章 實驗材料與方法…………………………… 21
3.1 實驗藥品 ……………………………………… 21
3.2 實驗設備 ……………………………………… 22
3.3 材料製備 ……………………………………… 23
3.3.1 N-MWCNTs製備 ……………………………… 23
3.3.2 M-N-MWCNTs製備 …………………………… 24
3.3.3 Fe3O4-MWCNTs製備 ………………………… 25
3.4 實驗步驟 ……………………………………… 26
3.4.1 溶液配置 …………………………………… 25
3.4.2 吸附實驗 …………………………………… 26
3.4.3 競相吸附 …………………………………… 25
3.5 表面官能基分析 ……………………………… 25
3.6 飽和磁化度 …………………………………… 28
3.7 熱重分析 ……………………………………… 28
3.8 比表面積分析 ………………………………… 37
第四章 結果與討論………………………………… 30
4.1 物化鑑定 ……………………………………… 30
4.1.1 奈米碳管表面官能基之鑑定 ……………… 30
4.1.2 磁性奈米碳管飽和磁化強度 ……………… 32
4.1.3 奈米碳材之熱重分析 ……………………… 34
4.1.4 奈米碳材之表面結構觀察 ………………… 36
4.1.5 奈米碳材之比表面積分析 ………………… 38
4.2 動力行為模擬 ………………………………… 41
4.2.1 奈米碳材對IBU之吸附動力行為模擬……… 41
4.2.2 奈米碳材對砷酸之吸附動力行為模擬 …… 52
4.2.3 奈米碳材對腐植酸之吸附動力行為模擬 … 56
4.3 奈米碳材對IBU、砷酸、腐植酸之等溫吸附… 66
4.4 Fe3O4-MWCNTs對砷酸-酚及砷酸-腐植酸之競相吸附78
第五章 結論與建議 ………………………………………81
    參考文獻 …………………………………………82
AIKEN, Leona S.; STEPHEN, G. West (1991), Multiple Regression: Testing and Interpreting Interactions. 1985.

AJAYAN, P. M. Nanotubes from carbon. Chemical reviews, 1999, 99.7: 1787-1800.

Ajiki, H., & Ando, T. (1993). Magnetic properties of carbon nanotubes. Journal of the Physical Society of Japan, 62(7), 2470-2480.

Chen, Y. C., Raravikar, N. R., Schadler, L. S., Ajayan, P. M., Zhao, Y. P., Lu, T. M., and Zhang, X. C. (2002). Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm. Applied Physics Letters, 81(6), 975-977.

Ferguson, John F.; GAVIS, Jerome. A review of the arsenic cycle in natural waters. Water research, 1972, 6.11: 1259-1274.

Gao, C., Li, W., Morimoto, H., Nagaoka, Y., & Maekawa, T., Magnetic carbon nanotubes: synthesis by electrostatic self-assembly approach and application in biomanipulations. The Journal of Physical Chemistry B, 2006, 110.14: 7213-7220.

Georgakilas, V., Pellarini, F., Prato, M., Guldi, D. M., Melle-Franco, M., & Zerbetto, F., Supramolecular self-assembled fullerene nanostructures. Proceedings of the National Academy of Sciences, 2002, 99.8: 5075-5080.

Ghimire, K. N., Inoue, K., Makino, K., & Miyajima, T., Adsorptive removal of arsenic using orange juice residue. Separation Science and Technology, 2002, 37.12: 2785-2799.

Hayes, M. H. B., and SWIFT, R. S. The chemistry of soil organic colloids. The chemistry of soil constituents, 1978, 179.

Hirsch, Andreas. Functionalization of single‐walled carbon nanotubes. Angewandte Chemie International Edition, 2002, 41.11: 1853-1859.

Jang, Jyongsik, and Hyeonseok Yoon. "Fabrication of Magnetic Carbon Nanotubes Using a Metal‐Impregnated Polymer Precursor." Advanced Materials 15.24 (2003): 2088-2091.

Liu, X., Lee, C., Zhou, C., & Han, J. (2001). Carbon nanotube field-effect inverters. Applied physics letters, 79(20), 3329-3331.

Oaks, J. L., Gilbert, M., Virani, M. Z., Watson, R. T., Meteyer, C. U., Rideout, B. A., ... & Khan, A. A., "Diclofenac residues as the cause of vulture population decline in Pakistan." Nature, 2004, 427.6975: 630-633.

Peng, X., Luan, Z., Di, Z., Zhang, Z., & Zhu, C., Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb (II) and Cu (II) from water. Carbon, 2005, 43.4: 880-883.

Roslev, P., Vorkamp, K., Aarup, J., Frederiksen, K., & Nielsen, P. H., Degradation of phthalate esters in an activated sludge wastewater treatment plant. Water Research, 2007, 41.5: 969-976.

Shelimov, K. B., Esenaliev, R. O., Rinzler, A. G., Huffman, C. B., & Smalley, R. E., Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chemical Physics Letters, 1998, 282.5: 429-434.

Stevenson, D. J., Formation of the giant planets. Planetary and Space Science, 1982, 30.8: 755-764.

Suzuki, S., Hidaka, K., & Hayashibara, M., Magnetic carbon nanotube. U.S. Patent No 7,109,703, 2006.

Terrones, M., Terrones, H., Banhart, F., Charlier, J. C., & Ajayan, P. M., Coalescence of single-walled carbon nanotubes. Science, 2000, 288.5469: 1226-1229.

Yagi, Y., Briere, T. M., Sluiter, M. H., Kumar, V., Farajian, A. A., & Kawazoe, Y., Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3 d transition metals: A first-principles study. Physical Review B, 2004, 69.7: 075414.

Yagi, Y., Briere, T. M., Sluiter, M. H., Kumar, V., Farajian, A. A., & Kawazoe, Y., Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3 d transition metals: A first-principles study. Physical Review B, 2004, 69.7: 075414.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊