跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/15 13:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭振育
研究生(外文):Chen-Yu Peng
論文名稱:以鹼性萃取劑及支撐式液膜萃取分離鈀(II)與鉑(II)並以生命週期評估法探討環境影響係數之研究
論文名稱(外文):The Extraction and Separation of Platinum(II) and Palladium(II) Using Basic Extractants and Supported Liquid Membranes and to Explore the Life Cycle Assessment Study of the Environmental Impact Factor
指導教授:蔡德華
口試委員:蘇至善張裕祺劉豫川郭文正陳慶國
口試日期:2014-07-28
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:工程科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:340
中文關鍵詞:分離萃取反萃取支撐式液膜Alamine 336Aliquat 336鹼性萃取劑
外文關鍵詞:PalladiumPlatinumLiquid-Liquid ExtractionStrippingSupported Liquid MembraneAlamine 336Aliquat 336Basic Extractants
相關次數:
  • 被引用被引用:10
  • 點閱點閱:335
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
本論文以鹼性萃取劑,在25℃下以煤油為稀釋劑,各別探討鉑(II)和鈀(II)之萃取平衡及萃取動力行為,並將所得相關萃取平衡數據,應用於支撐式液膜分離之理論分析上,解析出鈀(II)和鉑(II)在支撐式液膜分離程序中之傳送行為。
首先以實驗方式探討以鹼性萃取劑Alamine 336從氫氯酸水溶中萃取鈀(II)之萃取平衡,實驗結果發現,隨著鹼性萃取劑Alamine 336濃度的增加,鈀(II)在有機相和水相間的萃取分配比(D)為遞增;隨著氯離子濃度的增加,鈀(II)的萃取分配比(D)為遞減。經由圖解法與數值分析法得知,有機相Pd-Alamine 336錯合物的分子式為 及 ,其萃取平衡常數K20 = 2.61×103 及K21 = 2.47×104 (kmol/m3)?1。
以鹼性萃取劑Alamine 336從氫氯酸水溶中萃取鉑(II)之萃取平衡,實驗結果發現,隨著鹼性萃取劑Alamine 336濃度的增加,鉑(II)在有機相和水相間的萃取分配比(D)為遞增;隨著氯離子濃度的增加,鉑(II)的萃取分配比(D)為遞減。經由圖解法與數值分析法得知,有機相Pt-Alamine 336錯合物的分子式為 及 ,其萃取平衡常數 = 7.76×103及 = 5.38×103(kmol/m3)?1。
以鹼性萃取劑Aliquat 336從氫氯酸水溶中萃取鈀(II)之萃取平衡,實驗結果發現,隨著鹼性萃取劑Aliquat 336濃度的增加,鈀(II)在有機相和水相間的萃取分配比(D)為遞增;隨著氯離子濃度的增加,鈀(II)的萃取分配比(D)為遞減。經由圖解法與數值分析法得知,有機相Pd-Aliquat 336錯合物的分子式為 ,其萃取平衡常數K20 = 4.68×103。
以鹼性萃取劑Aliquat 336從氫氯酸水溶中萃取鉑(II)之萃取平衡,實驗結果發現,隨著鹼性萃取劑Aliquat 336濃度的增加,鉑(II)在有機相和水相間的萃取分配比(D)為遞增;隨著氯離子濃度的增加,鉑(II)的萃取分配比(D)為遞減。經由圖解法與數值分析法得知,有機相Pt-Aliquat 336錯合物的分子式為 ,其萃取平衡常數K20 = 3.11×104。
以Alamine 336從含鈀(II)及鉑(II)之氫氯酸水溶液中萃取鈀(II)和鉑(II),實驗結果顯示,鈀(II)和鉑(II)的萃取分配比(D)隨萃取劑濃度之增加而遞增,鈀(II)和鉑(II)的萃取分配比(D)隨氯離子濃度之增加而遞減。對鈀(II)而言,經由圖解和數值分析有機相鈀-Alamine 336 錯合物的組成為 及 ,其萃取平衡常數分別為 = 2.91×103,截距為 = 2.48×104 (kmol/m3)?1;對鉑(II)而言,有機相鉑-Alamine 336 錯合物的組成為 及 ,其萃取平衡常數分別為 = 7.76×103及 = 5.38×103 (kmol/m3)?1。
以Aliquat 336從含鈀(II)及鉑(II)之氫氯酸水溶液中萃取鈀(II)和鉑(II),實驗結果顯示,鈀(II)和鉑(II)的萃取分配比(D)隨萃取劑濃度之增加而遞增,鈀(II)和鉑(II)的萃取分配比(D)隨氯離子濃度之增加而遞減。對鈀(II)而言,經由圖解分析有機相鈀-Aliquat 336 錯合物的組成為 , 其萃取平衡常數分別為 = 5.41×103;對鉑(II)而言,有機相鉑-Aliquat 336 錯合物的組成為 ,其萃取平衡常數分別為 = 6.41×104。
將萃取過程中所消耗之化學藥品使用量統計歸納,並以生命週期評估法進行模擬,再將所得數據以交叉比對的方式進行探討,可分析出不同模擬情況下對環境危害之程度。


This study employed a tri-n-octyl/decyl amine (Alamine 336) as an extractant dissolved in kerosene to extract Platinum (II) and Palladium(II) from HCI solution at 25°C. Both of the extraction equilibrium and kinetic study were evaluated according to the experimental data to describe the transport phenomena of Platinum (II) and Palladium(II) in the separation process of supported liquid membrane(SLM).
The experiments of different stripping reagents such as HCI, NaCl, KCl, BaCl2, AlCl3, and thiourea were compared, respectively; and the optimal status was determined. The results showed that the extraction distribution ratios are proportional to the extractant concentration and disproportional to chloride ion concentration. By graphical analysis, the compositions of palladium complexes in organic phase and equilibrium constant of recovered extraction reaction were examined. Finally, the recovery efficiency of palladium(II) in acidic chloride solution was determined.
The alkaline extractant, i.e., Alamine 336, were selected and used in the extraction process to recover the palladium (II) from HCl solution. The results indicated that the extraction distribution of palladium (II) for organic and water phases increased as the increases of the concentration of Alamine 336 extractant. According to the results from graphical presentation and numerical analysis, the equilibrium constants of organic phases of Pd-Alamine 336 complexes (i.e., and ) were found to be K20 = 2.61×103 and K21 = 2.47×104 (kmol/m3)?1, responsively.
The extraction of platinum (II) from HCl solution was carried out using the alkaline extractant, i.e., Alamine 336. The results indicated that the extraction distribution of platinum (II) for organic and water phases increased as the increases of the concentration of Alamine 336 extractant. However, the extraction distribution of platinum (II) decreased as the increase of chloride concentration. According to the results from graphical presentation and numerical analysis, the equilibrium constants of organic phases of Pt-Alamine 336 complexes (i.e., and ) were found to be = 7.76×103 and = 5.38×103(kmol/m3)?1, responsively.
The extraction of palladium (II) from HCl solution was carried out using the alkaline extractant, i.e., Alamine 336. The results indicated that the extraction distribution of palladium (II) for organic and water phases increased as the increases of the concentration of Alamine 336 extractant. However, the extraction distribution of palladium (II) decreased as the increase of chloride concentration. According to the results from graphical presentation and numerical analysis, the equilibrium constants of organic phases of Pd-Alamine 336 complexes (i.e., ) were found to be K20 = 4.68×103.
In addition, the extraction of platinum (II) from HCl solution was carried out using the alkaline extractant, i.e., Alamine 336. The results indicated that the extraction distribution of platinum (II) for organic and water phases increased as the increases of the concentration of Alamine 336 extractant. However, the extraction distribution of platinum (II) decreased as the increase of chloride concentration. According to the results from graphical presentation and numerical analysis, the equilibrium constants of organic phases of Pd-Alamine 336 complexes (i.e., ) were found to be K20 = 3.11×104.
Furthermore, the extraction of both platinum (II) and palladium (II) were carried out from HCl solution using the alkaline Alamine 336 extractant. The results indicated that the extraction distribution of platinum (II) and palladium (II) for organic and water phases increased as the increases of the concentration of Alamine 336 extractant. However, the extraction distribution of both platinum (II) and palladium (II) decreased as the increase of chloride concentration. According to the results from graphical presentation and numerical analysis, the equilibrium constants of organic phases of Pd-Alamine 336 complexes (i.e., and ) were found to be = 2.91×103, with a slope of = 2.48×104 (kmol/m3)?1. In the case of platinum (II), the equilibrium constants of organic phases of Pt-Alamine 336 complexes (i.e., and ) were found to be = 7.76×103, with a slope of = 5.38×103 (kmol/m3)?1.
According to the results from graphical presentation and numerical analysis, the equilibrium constants of organic phases of Pd-Alamine 336 complexes (i.e., and ) were found to be = 2.91×103, with a slope of = 2.48×104 (kmol/m3)?1. In the case of palladium (II), the equilibrium constants of organic phases of Pt-Alamine 336 complexes (i.e., and ) were found to be = 7.76×103, with a slope of = 5.38×103 (kmol/m3)?1.
The extraction of both platinum (II) and palladium (II) were carried out from HCl solution using the alkaline Aliquat 336 extractant. The results indicated that the extraction distribution of platinum (II) and palladium (II) for organic and water phases increased as the increases of the concentration of Alamine 336 extractant. However, the extraction distribution of both platinum (II) and palladium (II) decreased as the increase of chloride concentration. In the case of palladium (II), according to the results from graphical presentation and numerical analysis, the equilibrium constants of organic phases of Pd-Aliquat 336 complexes (i.e., ) were found to be = 5.41×103. On the other hand, in the case of platinum (II), the equilibrium constants of organic phases of Pt-Aliquat 336 complexes (i.e., ) were found to be = 6.41×104.
Lastly, the environmental impacts of the extraction process was assessed using Umberto software. The inventory data for extraction process including amounts of chemical consumption was gathered in this study to quantify the environmental impacts of the proposed extraction process.


目錄
摘要......................................................I
ABSTRACT..................................................IV
誌謝......................................................IX
目錄......................................................X
表目錄...................................................XVI
圖目錄...................................................XIX
第一章 緒論................................................1
1.1 究動機與目的...........................................1
1.2 前言...................................................1
1.3 鉑(Pt)與鈀(Pd)之介紹與應用.............................2
1.4 鉑(II)與鈀(II)的供給與需求............................10
1.5金屬常見的回收方法.....................................23
1.5.1 沉澱分離法(Separation by precipitation).............23
1.5.2 電解沉積法(Electro deposited).......................24
1.5.3 離子交換法(Ion exchange process)....................28
1.5.4 溶劑萃取法(Solvent extraction)......................40
1.6溶劑萃取技術...........................................42
1.6.1 溶劑萃取之原理......................................43
1.6.2 萃取劑之作用與分類..................................46
1.6.3 稀釋劑之分類........................................74
1.6.4 修飾劑之作用........................................78
1.6.5 萃取劑之改質........................................78
1.6.6 反萃劑之選擇........................................79
1. 7 液膜分離之技術.......................................80
1.7.1液膜分離程序之傳送膜式...............................83
1.7.2液膜分離之分類.......................................86
1.7.2.1支撐式液膜.........................................86
1.7.2.2乳化式液膜.........................................87
1.7.2.3中空纖維膜.........................................89
1. 8 生命週期評估(Life Cycle Assessment, LCA )............93
1.8.1 前言................................................93
1.8.2 生命週期評估的發展..................................93
1.8.3 生命週期評估(LCA)架構及規範.........................95
1.8.4 生命週期評估軟體....................................99
1.8.5 總體暴露效應模型...................................103
1.9 論文研究架構.........................................105
第二章 實驗方法與器材裝置................................108
2.1 實驗藥品、材料與分析儀器.............................108
2.1.1藥品................................................108
2.1.2 實驗材料...........................................112
2.1.3 實驗測定與分析儀器.................................112
2.1.4 實驗裝置與設備.....................................114
2.1.4.1 溶劑萃取實驗之裝置...............................114
2.1.4.2 萃取動力實驗之裝置...............................114
2.1.4.3 支撐式液膜之製備.................................115
2.1.4.4 支撐式液膜之裝置.................................117
2.2 實驗方法.............................................118
2.2.1 鹼性萃取劑之改質...................................118
2.2.2 溶劑萃取之平衡實驗.................................120
2.2.3溶劑萃取之動力學實驗................................121
2.2.3.1反萃取速率測定....................................122
2.2.4 支撐式液膜之萃取平衡實驗...........................122
2.2.5濃度校正............................................123
第三章 以Alamine 336於氫氯酸水溶液中進行鈀(II)與鉑(II)之單金屬萃取平衡研究...........................................125
3.1前言..................................................125
3.2鈀(II)與鉑(II)離子在氫氯酸水溶液中之錯合反應..........125
3.3以Alamine 336為載劑探討鈀(II)之萃取平衡...............131
3.3.1 鈀(II)之萃取平衡再確認.............................140
3.3.2 氯離子濃度對鈀萃取百分比之影響.....................144
3.3.3 Alamine 336萃取劑濃度對鈀萃取百分比之影響..........145
3.4以Alamine 336作為載劑探討鉑(II)之萃取平衡.............146
3.4.1 鉑(II)之萃取平衡再確認.............................155
3.4.2 氯離子濃度對鉑萃取百分比之影響.....................159
3.4.3 Alamine 336萃取劑濃度對鉑萃取百分比之影響..........160
第四章 以Aliquat 336於氫氯酸水溶液中進行鈀(II)與鉑(II)之單金屬萃取平衡研究...........................................162
4.1前言..................................................162
4.2以Aliquat 336為載劑探討鈀(II)之萃取平衡...............162
4.2.1 鈀(II)之萃取平衡再確認.............................171
4.2.2 氯離子濃度對鈀萃取百分比之影響.....................175
4.2.3 Aliquat 336萃取劑濃度對鈀萃取百分比之影響..........176
4.3以Aliquat 336為載劑探討鉑(II)之萃取平衡...............177
4.3.1 鉑(II)之萃取平衡再確認.............................186
4.3.2 氯離子濃度對鉑萃取百分比之影響.....................189
4.3.3 Aliquat 336萃取劑濃度對鉑萃取百分比之影響..........191
第五章 以Alamine 336於氫氯酸水溶液中進行鈀(II)與鉑(II)之雙金屬萃取平衡實驗...........................................192
5.1 前言.................................................192
5.2 鈀(II)及鉑(II)之萃取平衡.............................192
5.3 鈀(II)及鉑(II)之萃取平衡再確認.......................206
5.4 鈀(II)及鉑(II)之在氫氯酸水溶液中之錯合反應...........215
5.5 Alamine 336萃取劑於鈀、鉑氫氯酸溶液中氯離子濃度對鉑萃取百分比之影響.............................................216
5.6 Alamine 336萃取劑濃度於鈀、鉑氫氯酸溶液中對鈀萃取百分比之影響...................................................218
5.7 Alamine 336萃取劑濃度於鈀、鉑氫氯酸溶液中對鉑萃取百分比之影響...................................................219
第六章 以Alquat 336於氫氯酸水溶液中進行鈀(II)與鉑(II)之雙金屬萃取平衡實驗...........................................220
6.1 前言.................................................220
6.2 鈀(II)及鉑(II)之萃取平衡.............................220
6.3 Aliquat 336萃取劑於鈀、鉑氫氯酸溶液中鈀(II)及鉑(II)之萃取平衡再確認.............................................235
6.4 Aliquat 336萃取劑於鈀、鉑氫氯酸溶液中氯離子濃度對鈀萃取百分比之影響.............................................242
6.5 Aliquat 336萃取劑於鈀、鉑氫氯酸溶液中氯離子濃度對鉑萃取百分比之影響.............................................244
6.6 Aliquit 336萃取劑濃度於鈀、鉑氫氯酸溶液中對鉑萃取百分比之影響...................................................245
6.7 Aliquat 336萃取劑於鈀、鉑氫氯酸溶液中對鉑萃取百分比之影響.......................................................246
第七章 以Alamine 336應用支撐式液膜進行鈀(II)、鉑(II)分離之研究.......................................................247
7.1 前言.................................................247
7.2 支撐式液膜傳送原理...................................247
7.3 結果與討論...........................................260
7.3.1 時間與流量泵浦轉速對透過係數之影響.................260
7.3.2 萃取劑濃度與透過係數之影響.........................266
7.4 鈀(II)與鉑(II)之萃取平衡.............................268
7.5 擴散係數推導與計算...................................276
7.5.1 溶液中之擴散係數...................................276
7.5.2 液膜中之擴散係數...................................276
第八章 以Aliquat 336應用支撐式液膜進行鈀(II)、鉑(II)分離之研究.......................................................279
8.1 前言.................................................279
8.2 鈀(II)與鉑(II)之萃取平衡.............................279
8.3 結果與討論...........................................285
8.3.1 時間與流量泵浦轉速對透過係數之影響.................285
8.4 萃取劑濃度與透過係數之影響...........................290
8.5 溶液中之擴散係數推導與計算...........................292
8.5.1 溶液中之擴散係數.................................292
8.5.2 液膜中之擴散係數ε*..............................292
第九章 以生命週期評估法(Life Cycle Assessment, LCA)探討本研究之溶劑萃取法對環境衝擊之影響評估究.....................295
9.1 模擬Alamine 336以溶劑萃取鈀(II)及Alamine 336以支撐式液膜萃取鈀(II)之環境影響係數.................................295
9.2 模擬Alamine 336以溶劑萃取鉑(II)及Alamine 336以支撐式液膜萃取鉑(II)之環境影響係數.................................303
9.3 模擬Aliquit 336以溶劑萃取鈀(II)及Aliquit 336以支撐式液膜萃取鈀(II)之環境影響係數...............................305
9.4 模擬 Aliquit 336以溶劑萃取鉑(II)及Aliquit 336以支撐式液膜萃取鉑(II)之環境影響係數...............................307
第十章 結論與待續之研究..................................309
10.1 結論................................................309
10.2 待續之研究..........................................313
符號彙整.................................................314
參考文獻.................................................318
附錄.....................................................339
作者簡介.................................................340


[1]H. J. Ache, L.H. Baetsle, R. P. Bust, A. F. Nechaev, V. P. Popik, Y. Ying, Feasibility of separation and utilization of ruthenium, rhodium and palladium from high-level waste, IAEA Technical Report Series 308, IAEA, Vienna, 1989.
[2]Ruey-Shin Juang, Ren-Hour Huang, "Equilibrium studies on reactive extraction of lactic acid with an amine extractant", The Chemical Engineering Journal, vol. 65, pp.47-53 (1997).
[3]蔡德華,以溶劑萃取和支撐式液膜分離鈷(II)和鎳(II)之研究,博士論文,國立成功大學化學工程研究所,台南,1991。
[4]C. Meskers, Umicore precious metals refining, "Guest lecture presentation for e-waste recycling at Delft University of Technology", September 8, 2009, Delft, The Netherlands.
[5]C. Hagelu¨ ken, Markets for the catalyst metals platinum, palladium and rhodium, Metall-Wirtschaft, 60 pp.31-42 (2006).
[6]C. Hagelu¨ ken, "Closing the loop-recycling of auto motive catalyst", Metall-Wirtschaft, 61 pp.24-39 (2006).
[7]M. A. Kim, J. C. Lee, C. K. Kim, M. S. Kim, B. S. Kim, K. K. Yoo, "Solvent extraction of platinum group metals from the leach liquor of spent automotive catalyst", Chawon Rissaikuring, 15 (5) pp.3-10 (2006).
[8]J. E. Barnes, J. D. Edwards, "Solvent extraction at Inco’s Acton precious metal refinery", Chem. Ind., 5 pp.151-155 (1982).
[9]F. L. Bernardis, R. A. Grant, D. C. Sherrington, "A review of methods of separation of the platinum-group metals through their chloro-complexes", React. Funct. Polym. 65 pp.205-217 (2005).
[10]H. Renner, "Platinum group metals and compounds", in: B. Elvers, S. Hawkins, G. Schulz (Eds.), Ulmann’s Encyclopedia of Industrial Chemistry, 5th ed., vol. A21, VCH Publishers, Weinheim, pp.75-131 (1992).
[11]R. I. Edwards, W. A. M. te Riele, G. J. Bernfield, "Review on the recovery of the platinum-group metals, In: G. J. K. Acres (Ed), Gmelin Handbook of Inorganic Chemistry", Platinum (Technology of the Platinum-group Metals), supp vol. A1, Springer, Berlin, pp.1-23 (1986).
[12]G. Prepper, R. Pfrepper, M. Knothe, "Recovery of palladium and silver from process solutions by precipitation with thiocyanates and iron cyanides", Hydrometallurgy, 21 pp.293-304 (1989).
[13]余建民,貴金屬萃取化學,化學工業出版社,第二版,第5頁。
[14]楊福泉,自廢觸媒中分離與純化鈀之研究,碩士論文,國立國立臺北科技大學化學工程研究所,臺北,2012。
[15]M. Grujicic, K. M. Chittajallu, "Design and optimization of polymer electrolyte membrane (PEM) fuel cells. Applied Surface Science 227", pp. 56-72 (2004).
[16]G. Hoogers, Editor, "Fuel Cell Technology Handbook", CRC Press, Boca Raton, FL (2003).
[17]J. Larminie and A. Dicks, "Fuel Cell Systems Explained, Second Edition", John Wiley, New York (2003).
[18]R. H. Thring, Editor, "Fuel Cells for Automotive Applications", Professional Engineering Publishing, UK and ASME Press, New York.
[19]W. Vielstich, A. Lamn and H. A. Gasteiger, Editors, "Handbook of Fuel Cells: Fundamentals", Technology and Applications, Four Volumes, John Wiley, New York (2003).
[20]鄭耀宗等著,現場型磷酸燃料應用於大用戶之可行性研究,1995年。
[21]左峻德,燃料電池之特性與運用,2001年。
[22]Vismadeb Mazumder, Miaofang Chi, Karren L. More, and Shouheng Sun, "Core/Shell Pd/FePt Nanoparticles as an Active and Durable Catalyst for the Oxygen Reduction", Journal of the American Chemical Society, vol. 132, pp.7848-7849 (2010).
[23]Jonathan Butler, "Platinum 2012 Interim Review", Johnson Matthey Public Limited Company, 2012 Report (2013).
[24]Jonathan Buler, Sara Coles, Margery Ryan, Keith White, "Platinum Metals Review", Johnson Matthey Public Limited Company, 2012 Report, 57 (3), pp.215-216 (2013).
[25]D. R. In Lide, ed., "Magnetic susceptibility of the elements and inorganic compounds", CRC Handbook of Chemistry and Physics, (86th ed.). Boca Raton (FL): CRC Press (2005).
[26]C. R. Hammond, The Elements, in Handbook of Chemistry and Physics 81st edition. CRC press (2004).
[27]於世林,圖解現代分析化學基本實驗操作技術,科學出版社,2013。
[28]羅文偉,環工單元操作,高立圖書出版社,2006。
[29]尤光先,電鍍工程學,財團法人徐氏文教基金會,1999。
[30]張裕琪 編著,表面處理,高立圖書出板,10-12頁,1990。
[31]楊岳軍,「離子交換樹脂在重金屬廢水處理之應用」,重金屬廢水處理技術研討會,工研院化工所,新竹,1989。
[32]曾迪華,工業污染防治技術手冊-工業廢水離子交換處理,經濟部工業局,財團法人中國技術服務社污染防治技術服務團,1993。
[33]王九思,水處理化學,化學工業出版社,189-217頁,2002。
[34]堂受印,戴友芝,水處理工程師手冊,化學工業出版社,232-276頁,2000。
[35]余自力,程光磊主編,金屬離子分析技術,化學工業出版社,北京,134頁,2004。
[36]Control and Treatment Technology for the Metal Finishing Industry - Ion Exchange USEPA EPA 625/-81-007, pp.4-10 (June 1981).
[37]朱屯,萃取與離子交換,冶金鹽工業出版社,387-471頁,2005。
[38]王廣珠,離子交換樹脂使用及診斷技術,化學工業出版社,12-14頁,2004。
[39]柯清水,新世紀化工化學大辭典,正文書局,496、1304頁,2000。
[40]Rick W. Fedeniuk, Phyllis J. Shand, "Theory and methodology of antibiotic extraction from biomatrices", Journal of Chromatography, A, vol. 812, pp.3-15 (1998).
[41]Ruey-Shin Juang, Yu-Yin Wang, "Amino acid separation with D2EHPA by solvent extraction and liquid surfactant membranes", Journal of Membrane Science, vol. 207, pp.241-252 (2002).
[42]J. Marinsky, and Y. Macrcus, "Ion exchange and solvent extraction", vol. 10, Macrcel Dekker, New York (1973).
[43]吳紹起,溶劑萃取化學基本原理與應用,淡江大學出版部,台北,1982。
[44]徐光憲,稀土的溶劑萃取,科學出版社,北京,2010。
[45]任惠敏,分析化學,化學工業出版社,北京,2001。
[46]汪家鼎,溶劑萃取手冊,化學工業出版社,北京,2001。
[47]A. S. Kertes, C. J. King, "Extraction chemistry of fermentation product carboxylic acids", J. Biotechnol. Bioeng., 28 pp.269-282 (1986).
[48]J. A. Tamada, A. S. Kertes, C. J. King, "Extraction of carboxylic acids with amine extractants. 1. Equilibria and law of mass action modeling", Ind. Eng. Chem. Res., 29 pp.1319-1326 (1990).
[49]J. A. Tamada, C. J. King, "Extraction of carboxylic acids with amine extractants. 2. Chemical interaction and interpretation of data", Ind. Eng. Chem. Res., 29 pp.1327-1333 (1990).
[50]P. Sun, M. Lee, M. Lee, "Separation of Rh(III) from the mixed chloride solutions containing Pt(IV) and Pd(II) by extraction with Alamine 336", Bull. Korean Chem., Soc. 31 (7) pp.1945-1950(2010).
[51]S. T. Yang, S. A. White, S. T. Hsu, "Extraction of carboxylic acids with tertiary and quaternary amines: Effect of pH", Ind. Eng. Chem. Res., 30 pp.1335-1342 (1991).
[52]C. Nowottny, W. Halwachs, K. Schugerl, "Recovery of platinum, palladium and rhodium from industrial process leaching solutions by reactive extraction", Sep. Purif. Technol., 12 pp.135-144 (1997).
[53]M. Hidalgo, A. Masana, V. Salvado, "Extraction of palladium with tri-isobutylphosphinesulphide (cyanex 471) in toluene from chloride solutions containing thiocyanate", Talanta, 38(5) pp.483-488 (1991).
[54]V. M. Knothe, "Untersuchungen zur Extraktion der Pt-Metalle mit Tributylphospat aus salzsauren Losungen", Z. Anorg. Allg. Chem., 470 pp.216-226 (1980).
[55]P. P. Sun, M. S. Lee, "Separation of Pt from hydrochloric acid leaching solution of spent catalysts by solvent extraction and ion exchange", Hydrometallurgy, 110 pp.91-98(2011).
[56]J. Y. Lee, B. Rajub, B. N. Kumar, J. R. Kumar, H. K. Park, B. R. Reddy, "Solvent extraction separation and recovery of palladium and platinum from chloride leach liquors of spent automobile catalyst", Sep. Purif. Technol., 73 pp.213-218 (2010).
[57]S. V. Bendekar, P. M. Dhadke, Solvent extraction separation of platinum(IV) and palladium(II) by 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A), Sep. Purif. Technol., 13 pp.129-135 (1998).
[58]K. Ohto, J. Nagata, S. Honda, K. Yoshizuka, K. Inoue, Y. Baba, "Solvent extraction of precious metals with an organoaminophosphonate", Solvent Extr. Ion Exch., 15(1) pp.115-130 (1997).
[59]M. Rovira, J. L. Cortina, A. M. Sastre, "Selective liquid–liquid extraction of palladium(II) from hydrochloric acid media by di-(2-ethylhexyl) thiophospharic acid (DEHTPA)", Solvent Extr. Ion Exch., 17 pp.333-349 (1999).
[60]T. I. Zhidkova, V. V. Belova, Y. Y. Brenno, L. L. Zhidkov, A. I. Khol’kin, "Palladium extraction by a cyanex 301-based binary extractant from chloride solutions", Zhurnal Neorganicheskoi Khimii, 54(9) pp.1573-1578 (2009).
[61]T. Vincent, E. Guibal, R. Chiarizia, "Palladium recovery by reactive precipitation using a cyanex 301-based stable emulsion", Sep. Sci. Technol., 42 pp.3517-3536 (2007).
[62]Y. Baba, K. Inoue, K. Yoshizuka, T. Furusawat, "Solvent extraction of palladium(I1) with nonchelating oximes with different alkyl chain lengths", Ind. Eng. Chem. Res., 29(10) pp.2111-2118 (1990).
[63]A. Dakshinamoorthy, P. S. Dhami, P. W. Naik, N. L. Dudwadkar, S. K. Munshi, P. K. Dey, V. Venugopal, "Separation of palladium from high level liquid waste of PUREX origin by solvent extraction and precipitation methods using oximes", Desalination, 232 pp.26-36 (2008).
[64]E. Jackson, "The solvent extraction behaviour of ruthenium with P-50 oxime in aqueous nitrate solutions", Miner. Eng., 9 (4) pp.469-474 (1996).
[65]P. A. Lewis, D. F. C. Morris, E. L. Short, D. N. Waters, "Application of solvent extraction to the refining of precious metals. IV. Practical and structural aspects of the separation of rhodium, palladium, iridium and platinum with organic sulphoxides", J. Less Common Met., 45(2) pp.193-214 (1976).
[66]J. S. Preston, A. C. D. Preez, "Solvent extraction of platinum group metals from hydrochloric acid solutions by dialkylhoxides", Solvent Extr. Ion Exch., 20(3) pp.359-374(2002).
[67]F. J. Alguacil, A. Cobo, A. G. Coedo, M. T. Dorado, "Extraction of platinum(IV) from hydrochloric acid solutions by amine alamine 304 in xylene. Estimation of the interaction coefficient between PtCl62-and H+", Hydrometallurgy, 44 pp.203-212 (1997).
[68]B. Swain, J. Jeong, S. K. Kim, J. C. Lee, "Separation of platinum and palladium from chloride solution by solvent extraction using Alamine 300", Hydrometallurgy, 104 pp.1-7 (2010).
[69]杭州大學化學系分析化學教研室編,分析化學手冊(第二分冊)-化學分析,化學工業出版社,北京,1997。
[70]K. L. Wasewar, D. Z. Shende, "Equilibrium study for reactive extraction of caproic acid in mibk and xylene", Engineering, 3 pp.829-835 (2011).
[71]A. A. Mhaske, P. M. Dhadke, "Extraction separation studies of Rh, Pt and Pd using Cyanex 921 in toluene––a possible application to recovery from spent catalysts", Hydrometallurgy, 61 pp.143-150 (2001).
[72]N. N. Li, "Separation of hydrocarbons by liquid membrane permeation", Ind. Eng. Chem. Process Des. Dev., 10(2), pp.215-221 (1971).
[73]Z. Zhu, W. Zhang, C. Y. Cheng, "A literature review of titanium solvent extraction in chloride media", Hydrometallurgy, pp.105 304-313 (2011).
[74]P. Giridhar, K. A. Venkatesan, T. G. Srinivasan, P. R. Vasudeva Rao, "Extraction of fission palladium by Aliquat 336 and electrochemical studies on direct recovery from ionic liquid phase", Hydrometallurgy, 81 pp.30-39 (2006).
[75]A. Uheida, Y. Zhang, M. Muhammed, "Selective extraction of palladium(II) from chloride solutions with nonylthiourea dissolved in chloroform", Solvent Extr. Ion Exch., 20 pp.717-733 (2002).
[76]J. R. Kumar, H. I. Lee, J. Y. Lee, J. S. Kim, J. S. Sohn, "Comparison of liquid–liquid extraction studies on platinum(IV) from acidic solutions using bis(2,4,4-trimethylpentyl) monothiophosphinic acid", Sep. Purif. Technol., 63 pp.184-190 (2008).
[77]B. R. Reddy, J. Y. Lee, H. K. Park, "Process for the separation and recovery of palladium and platinum from spent automobile catalyst leach liquor using LIX 84I and Alamine 336", J. Hazard. Mater., 180 pp.253-258 (2010).
[78]J. Y. Lee, J. R. Kumar, J. S. Kim, D. J. Kim, H. S. Yoon, "Extraction and separation of Pt(IV)/Rh(III) from acidic chloride solutions using Aliquat 336", J. Ind. Eng. Chem., 15 pp.359-364 (2009).
[79]Y. A. El-Nadi, N. S. Awwad, A. A. Nayl, "A comparative study of vanadium extraction by Aliquat-336 from acidic and alkaline media with application to spent catalyst", Int. J. Miner. Process., 90 pp.115-120 (2009).
[80]A. Cieszynska, M. Wisniewski, "Extraction of palladium(II) from chloride solutions with Cyphos_IL 101/toluene mixtures as novel extractant", Sep. Purif. Technol., 73 pp.202-207 (2010).
[81]P. P. Sun, M. S. Lee, "Separation of Pt(IV) and Pd(II) from the loaded Alamine 336 by stripping", Hydrometallurgy, 109 pp.181-184 (2011).
[82]T. C. Huang, and R. S. Juang, "Kinetics and Mechanism of Zinc Extraction from Sulfate Medium with Di(2-ethylhexyl)phosphoric Acid", J. Chem. Eng. Japan, 19(5), pp.379-386 (1986).
[83]R. S. Juang, and Y. T. Chang, "Kinetics and Mechanism for Copper(II) Extraction from Sulfate Solutions with Bis(2-Ethylhexyl)phosphoric acid", Ind. Eng. Chem. Res., 32(1), pp.207-213 (1993).
[84]Michiaki Matsumoto, Yasushi Inomoto, Kazuo Kondo, "Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids", Journal of Membrane Science, Volume: 246, Issue: 1, January 1, pp.77-81 (2005).
[85]M. Di Luccio, B. D. Smith, T. Kida, C. P. Borges, T. L. M. Alves, "Separation of fructose from a mixture of sugars using supported liquid membranes", Journal of Membrane Science, Volume: 174, Issue: 2, pp.217-224 (July 31, 2000).
[86]K. H. Lee, D. F. Evans and E. L. Cussler, "Selective Copper Recovery with Two 312 Types of Liquid Membranes", AIChE J., 24(5), pp.860-868 (1978).
[87]T. C. Huang, and T. H. Tsai, "Separation of Cobalt and Nickel Ions by Composite Supported Liquid Membrane", Proc. Natl. Sci. Counc., 15(3), pp.246-252 (1991).
[88]P. R. Danesi, and L. Reichley-Yinger, "A Composite Supported Liquid Membrane for Ultraclean Co-Ni Separations", J. Membr. Sci., 27(3), pp.339-347 (1986).
[89]N. A. Sayar, M. Filiz, A. A. Sayar, "Extraction of Co(II) and Ni(II) from concentrated HCl solutions using Alamine 336", Hydrometallurgy, 96, pp.148-153 (2009).
[90]K. Sarangi, E. Padhan, P. V. R. B. Sarma, K. H. Park, R. P. Das, "Removal/recovery of hydrochloric acid using Alamine 336, Aliquat 336, TBP and Cyanex 923", Hydrometallurgy, 84, pp.125-129 (2006).
[91]Jose´ Marchese, Fernando Valenzuela, Carlos Basualto, Adolfo Acosta, "Transport of molybdenum with Alamine 336 using supported liquid membrane", Hydrometallurgy, 72, pp.309-317 (2004).
[92]Mercedes E. Campderro´s, Jose´ Marchese, "Transport of niobium(V) through a TBP–Alamine 336 supported liquid membrane from chloride solutions", Hydrometallurgy, 61,pp. 89-95 (2001).
[93]Recep Ali Kumbasar, "Studies on extraction of chromium (VI) from acidic solutions containing various metal ions by emulsion liquid membrane using Alamine 336 as extractant", Journal of Membrane Science, 325, pp.460-466 (2008).
[94]Man-Seung Lee and Sang-Ho Nam, "Solvent Extraction of Ni(II) from Strong Hydrochloric Acid Solution by Alamine336", Bull. Korean Chem., Soc, Vol. 32, No. 1, pp.113-116 (2011).
[95]San-Martin Marta, Carmen Pazos & Jose Coca, "Reactive Extraction of Lactic Acid with Alamine 336 in the Presence of Salts and Lactose", J. Chem. Tech. Biotechnol, 54, pp.1-6 (1992).
[96]Kailas L. Wasewar, A. Bert M. Heesink, Geert F. Versteeg, "Reactive extraction of lactic acid using alamine 336 in MIBK: equilibria and kinetics", Journal of Biotechnology, 97, pp.59-68 (2002).
[97]J. Y. Lee, J. R. Kumar, J. S. Kim, H. K. Park, H. S. Yoon, "Liquid–liquid extraction/separation of platinum(IV) and rhodium(III) from acidic chloride solutions using tri-iso-octylamine", J. Hazard. Mater., 168, pp.424-429 (2009).
[98]R. J. Dawson and G. H. Kelsall, "Recovery of platinum group metals from secondary materials. I. Palladium dissolution in iodide solutions", Journal of Applied Electrochemistry, 37, pp.3-14 (2007).
[99]G. Levitin, G. Schmuckler, "Solvent extraction of rhodium chloride from aqueous solutions and its separation from palladium and platinum", Reactive & Functional Polymers, 54, pp.149-154 (2003).
[100]T. Sato, "The Extraction of Uranium(VI) from Hydrochloric Acid Solutions by Long-chain Alkyl Quaternary Ammonium Chloride", J. Inorg. Nucl. Chem., 34(12), pp.3835-3843 (1972).
[101]R. S. Juang, H. C. Kao and W. H. Wu, "Analysis of Liquid Membrane Extraction of Binary Zn(II) and Cd(II) from Chloride Media with Aliquat 336 Based on Thermodynamic Equilibrium Models", J. Memb. Sci., 228(2), pp.169-177 (2004).
[102]F. M. Fábrega, and M. B. Mansur, "Liquid–liquid Extraction of Mercury(II) from Hydrochloric Acid Solutions by Aliquat 336", Hydrometallurgy, 87(3-4), pp.83-90 (2007).
[103]M. S. Lee, and M. Filiz, "Solvent Extraction of Mn(II) from Strong Hydrochloric Acid Solutions by Alamine336", Materials Trans., 49(11), pp.2642-2647 (2008).
[104]M. S. Lee, and S. H. Nam, "Solvent Extraction of Zinc from Strong Hydrochloric Acid Solution with Alamine336", Bull. Korean Chem. Soc., 30(7), pp.1526-1530 (2009).
[105]M. S. Lee, and K. J. Lee, "Separation of Iron and Nickel from a Spent FeCl3 Etching Solution by Solvent Extraction", Hydrometallurgy, 80(3), pp.163-169 (2010).
[106]K. Inoue, T. Tsuji and I. Nakamori, "Extraction Equilibrium of Zinc Chloride with Long-chain Alkylamine", J. Chem. Eng. Japan, 12(5), pp.353-357 (1979).
[107]T. Kataoka, T. Nishiki and K. Ueyama, "Extraction Equilibria of Mercury(II) from Acidic Chloride Solutions with Trioctylamine", J. Chem. Eng. Japan, 17(4), pp.351-355 (2006).
[108]Z. Hubicki , A. Wołowicz, "Adsorption of palladium(II) from chloride solutions on Amberlyst A 29 and Amberlyst A 21 resins", Hydrometallurgy, 96, pp.159-165 (2009).
[109]L. J. Lozano, C. Godinez, A. P. de los Rios, F. J. ernandez-Fernandez, S. Sanchez-Segado, F. J. Alguacil, "Recent advances in supported ionic liquid embrane technology", Journal of Membrane Science, 376, pp.1-14 (2011).
[110]Xingrong Liu Xiujuan, Zhang, "Simplified model for extraction of rare-earth ions using emulsion liquid membrane", Journal of Membrane Science, Volume: 128, Issue: 2, June 11, pp.223-229 (1997).
[111]Mousumi Chakraborty, Chiranjib Bhattacharya, Siddhartha Datta, "Effect of drop size distribution on mass transfer analysis of the extraction of nickel(II) by emulsion liquid membrane", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume: 224, Issue: 1-3, August 29, pp.65-74 (2003).
[112]G. C. Sahoo, N. N. Dutta, "Studies on emulsion liquid membrane extraction of cephalexin", Journal of Membrane Science, Volume: 145, Issue: 1, June 24, pp.15-26 (1998).
[113]Sang Cheol Lee, "Continuous extraction of penicillin G by emulsion liquid membranes with optimal surfactant compositions", Chemical Engineering Journal, Volume: 79, Issue: 1, September 1, pp.61-67 (2000).
[114]A. Hasanoglu, "Removal of phenol from wastewaters using membrane contactors: Comparative experimental analysis of emulsion pertraction", Desalination, Volume: 309, Complete, January 15, pp.171-180 (2013).
[115]S. Kiani, S. M. Mousavi, "Ultrasound assisted preparation of water in oil emulsions and their application in arsenic (V) removal from water in an emulsion liquid membrane process", Ultrasonics - Sonochemistry, Volume: 20, Issue: 1, January, pp.373-377 (2013).
[116]蔡泓欣,以液膜萃取分離錳(II)和鎳(II)之研究,博士論文,國立台北科技大學化學工程研究所,台北,2011。
[117]中國「博精儀器股份有限公司」網頁,http://www.aandb.com.tw/.
[118]「中國中小企業遼寧網」網頁,http://www.zglnqyw.org/.
[119]中國「遼寧躍亞新科技有限公司」網頁,http://www.yueya.com/.
[120]工業材料雜誌,301期,台灣,2012年。
[121]中國「富陽飛天膜技術有限公司」網頁,http://www.wdfscl.com/.
[122]中國「北京海德能科技有限公司」網頁,http://bjhaideneng.1688.com/.
[123]張韋豪,台灣半導體產業環境管理與碳足跡現況及生命週期評估軟體需求探討,碩士論文,國立臺北科技大學環境工程與管理研究所,台北,2011年。
[124]W. Klopffer, "Life Cycle Assessment-from the Beginning to the Current State", Environmental Science and Pollution Research Internetional, Vol.4, No. 4, pp.223-228 (1997).
[125]劉育成,生命週期評估應用於地下管推工法施工階段之碳盤查及其減碳策略,碩士論文,國立臺北科技大學土木與防災研究所,台北,2013年。
[126]范景雯,以投入產出生命週期評估探討台灣自來水供水系統之碳足跡,碩士論文,國立臺北科技大學環境工程與管理研究所,台北,2012年。
[127]江玄政,生命週期評估技術應用之介紹,環保資訊月刊,第57期,2003年。
[128]李育明,生命週期衝擊評估方法,2000年生命週期評估與環保化設計研討會論文集,59-63頁,2000年。
[129]行政院台灣產品碳足跡資訊網,http://cfp.epa.gov.tw/carbon/ezCFM/Function/PlatformInfo/FLConcept/FLFootLifecycle.aspx.
[130]申永順、呂穎彬,生命週期評估之技術發展及其軟體介紹,「化工技術月刊」,第11期,134-143頁,2003。
[131]左鐵鏞、聶祚仁,環境材料基礎,科學出版社,北京,2003。
[132]ISO 14040, "Environmental management- Life cycle assessment- Principles and framework", (2006).
[133]T. C. Huang, C. C. Huang and D. H. Chen, "Transport of Chromium(VI) through a Supported Liquid Membrane Containing Tri-n-octylphosphine Oxide", Separ. Sci. Technol., 33(13), pp.1919-1935 (1998).]
[134]I. Komasawa, T. Otake and T. Yamashita, "Mechanism and Kinetics of Copper Permeation Through a Supported Liquid Membrane Containing a Hydroxyoxime as a Mobile Carrier", Ind. Eng. Chem. Fundam., 22(1), pp.127-131 (1983).]
[135]T. Kataoka, T. Nishiki, Y. Tamura and K. Ueyama, "Mechanism of Chloride Ion Transport Through Diaphragm-type Liquid Membrane", J. Chem. Eng. Japan, 13(1) pp.35-40 (1980).
[136]P. R. Danesi, R. Chiarizia and M. Muhammed, "Mass Transfer Rate in Liquid Anion Exchange Processes-I:−Kinetic of the Two-phase Acid-base Reaction in the System Trilaurylamine-toluene-HCl-water", J. Inorg. Nucl. Chem., 40(8), pp.1581-1589 (1978).
[137]P. R. Danesi, E. P. Horwitz, P. Rickert, "Transport of Eu3+ through a bis(2-ethylhexyl)-phosphoric acid, n-dodecane solid supported liquid membrane", Separation Science and Technology, vol. 17, no. 9, pp.1183-1192(1982).
[138]P. R. Danesi, E. P. Horwitz, G. F. Vandegrift, et al. , "Mass Transfer Rate through Liquid Membrane: Interfacial Chemical Reactions and Diffusion as Simultaneous Permeability Controlling Factors [J].", Sep. Sci. Technol., 16(2): pp.201-214 (1981).
[139]呂穎彬,「生命週期評估簡介」,環境工程會刊,第七卷,第一期,第37-42頁,1996。
[140]吳照雄,產品生命週期分析(I),86年度永續會成果發表論文集,行政院國家科學委員會永續發展推動委員會,1997。
[141]P. R. Danesi, "Separation of Metal Species by Supported Liquid Membranes", Separ. Sci. Technol., 19(11-12), pp.857-894 (1985).
[142]中崗科技有限公司代理Umberto軟體之網頁,http://www.ixon.com.tw/Products/Unberto/Unberto.htm.
[143]呂穎彬,「生命週期評估資料庫及運用現況」,環保月刊,第二卷,第一期,第95-106頁,2002。
[144]鍾美華、王壬,EuP生態化設計系統介紹,「生命週期評估與管理」研討會」,107-118頁,2007。
[145]左鐵鏞、聶祚仁,環境材料基礎,科學出版社,北京,75頁,2003。
[146]左鐵鏞、聶祚仁,環境材料基礎,科學出版社,北京,78頁,2003。
[147]高向前,非分散式萃取程序分離金屬酸液中貴重金屬之質傳分析,博士論文,元智大學化學工程與材料科學學系,桃園,2006。
[148]莊瑞鑫,以二(2-乙基己基)磷酸萃取金屬離子之質量傳送,博士論文,國立成功大學化學工程研究所,台南,1986。
[149]T. C. Huang, and T. H. Tsai , "Separation of Cobalt and Nickel Ions in Lithium Nitrate Solutions by Solvent Extraction and Liquid Membrane with HEHEHP Kerosene Solution", Acta Chem. Scand., 45, pp.383-391 (1991).
[150]T. C. Huang, and T. H. Tsai, "Separation of Cobalt and Nickel Ions in Sulfate Solutions by Liquid-liquid Extraction and Supported Liquid Membrane with Di(2-ethylhexyl) Phosphoric Acid Dissolved in Kerosene", J. Chem. Eng. Japan, 24(1) pp.126-132 (1991).
[151]T. C. Huang, and T. H. Tsai, "Separation of Cobalt and Nickel Ions by Composite Supported Liquid Membrane", Proc. Natl. Sci. Counc., 15(3), pp.246-252 (1991).
[152]S. H Lin, S. H. Huang and R. S. Juang, "Nonideality in Two-phase Systems of Copper(II) Extraction from Sulfate Solutions with LIX64N in Kerosene", Sep. Sci. Technol., 37(1), 147-159 (2002).
[153]R. C. Reid, J. M. Prausnitz and T. K. Sherwood, "The Properties of Gases and Liquids," 4th ed., Mcgraw-Hill Book Co., Chapter 11 (1987).
[154]S. R. S. Sastri, Swati Mohanty and K. K. Rao, "Liquid Volume at Normal Boiling Point," CJChE., 74(1), 170-172 (1996).
[155]W. Schotte, "Prediction of the Molar Volume at the Normal Boiling Point," Chem. Eng. J., 48(3), 167-172 (1992).
[156]C. R. Wilke, and P. Chang, "Correlation of Diffusion Coefficients in Dilute Solutions," AIChE J., 1(2), 264-270 (1955).
[157]陳景,鉑族金屬冶金,北京:化學科學出版社,第339頁,2008。
[158]Mohamed Azaroual, Bruno Romand, Philippe Freyssinet, Jean-Robert Disnar, "Solubility of platinum in aqueous solutions at 25°C and pHs 4 to 10 under oxidizing conditions", Geochimica et Cosmochimica Acta, Vol. 65, No. 24, pp.4453-4466 (2001).
[159]C. Forrest, M. A. Hughes, "The modelling of equilibrium data for the liquid-liquid extraction of metals. Part II. Models for the copper/LIX 64N and chromate/Aliquat 336", Hydrometallurgy, 1(2) pp.139-154 (1975).
[160]I. Komasawa, T. Otake and I. Hattori, "Separation of Cobalt and Nickel Using Solvent Extraction with Acidic Organophosphorus Compounds", J. Chem. Eng. Japan, 16(5), pp.384-388 (1983).
[161]I. Komasawa, T. Otake and I. Hattori, "Extraction of Nickel and Cobalt with 2- Ethylhexyl-phosphonic Acid Mono-2-ethylhexyl Eater", J. Chem. Eng. Japan, 16(3), pp.210-217 (1983).
[162]T. C. Huang, and R. S. Juang, "Extraction Equilibrium of Zinc from Sulfate Media with Bis(2-ethylhexyl)phosphoric Acid", Ind. Eng. Chem. Fundam., 25(4), pp.752-757 (1986).
[163]C. T. Huang, and T. C. Huang, "The Equilibrium Reaction of the Extraction of Uranium(VI) with Di-(2-ethylhexyl)phosphoric Acid from Nitric Acid Solutions", Solvent Extr. Ion Exch., 5(4), pp.611-631 (1987).
[164]M. Rovira, L. Hurtado, J. L. Cortina, J. Arnaldos, A. M. Sastre, "Recovery of palladium(II) from hydrochloric acid solutions using impregnated resins containing Alamine 336", React. Funct. Polym., 38 pp.279-287 (1998).
[165]C. T. Huang, and T. C. Huang, "Kinetics of the Extraction of Uranium(VI) from Nitric Acid Solutions with Di-(2-ethylhexyl)phosphoric Acid", Ind. Eng. Chem. Res., 27(9), 1675-1680 (1988).
[166]T. C. Huang, and T. H. Tsai, "Extraction of Nickel(II) from Sulfate Solutions by Bis(2-ethylhexyl)phosphoric Acid Dissolved in Kerosene", Ind. Eng. Chem. Res., 28(10), pp.1557-1562 (1989).
[167]T. C. Huang, and T. H. Tsai, "Extraction Equilibrium of Cobalt(II) from Sulphate Solutions by Di(2-ethylhexyl)phosphoric Acid Dissolved in Kerosene", Polyhedron, 9(9), pp.1147-1153 (1990).
[168]B. Zhang, G. Gozzelino and Y. Dai, "A Non-steady State Model for the Transport of Iron(III) Across n-Decanol Supported Liquid Membrane Facilitated by D2EHPA", J. Memb. Sci., 210(1), pp.103-111 (2002).
[169]D. H. Liem, "High-speed Computers as a Supplement to Graphical Methods. 12.Application of LETAGROP to Data for Liquid-liquid Distribution Equilibria,"Acta Chem. Scand., 25, pp.1521-1534 (1971).
[170]S. D. Kolev, Y. Sakai, R. W. Cattrall, R. Paimin, I. D. Potter, "Theoretical and experimental study of palladium(II) extraction from hydrochloric acid solutions into Aliquat 336/PVC membranes", Anal. Chim. Acta, 413 pp.241-246 (2000).
[171]A. K. De, S. M. Khopkar, R. A. Chalmers, "Solvent extraction of metals", Van Nostrand Reinhold, London, 19 pp.23-27 (1970).
[172]R. A. Kumbasar, "Transport of cadmium ions from zinc plant leach solutions through emulsion liquid membrane-containing Aliquat 336 as carrier", Sep. Purif. Technol., 63 pp.592-599 (2008).
[173]Ana Maria Tarditi, Jose Marchese, Mercedes E. Campderros, "Modelling of zinc (II) transport through a PC-88A supported liquid membrane", Desalination, Volume: 228, Issue: 1-3, August 15, pp.226-236 (2008).
[174]R. G. Pearson, "Crystal Field Theory and Substitution Reactions of Metal Ions", J. Chem. Educ., 38(4), pp.164-173 (1961).
[175]P. R. Danesi, "A Simplified Model for the Coupled Transport of Metal Ions Through Hollow-fiber Supported Liquid Membrane", J. Membr. Sci., 20(3), pp.231-248 (1984).
[176]C. T. Huang, and T. C. Huang, "Kinetics of the Coupled Transport of Uranium(VI) Across Supported Liquid Membranes Containing Bis(2-ethylhexyl)phosphoric Acid as a Mobile Carrier", Ind. Eng. Chem. Res., 27(9), pp.1681-1685 (1988).
[177]R. S. Juang, and R. H. Lo, "Kinetics of the Coupled Transport of Vanadium(IV) from Sulfate Solutions Through Supported Liquid Membranes", Ind. Eng. Chem. Res., 33(4), pp.1011-1016 (1994).
[178]S. B. Kanungo, and R. Mohapatra, "Coupled Transport of Zn(II) Through a Supported Liquid Membrane Containing Bis(2,4,4-trimethylpentyl) Phosphinic Acid in Kerosene. II Experimental Evaluation of Model Equations for Rate Process under Different Limiting Conditions", J. Memb. Sci., 105(3), pp.227-235 (1995).
[179]S. B. Kanungo, and R. Mohapatra, "Coupled Transport of Zn(II) Through a Supported Liquid Membrane Containing Bis(2,4,4-trimethyl pentyl) Phosphinic Acid in Kerosene. I. A model for the Rate Process Involving Binary and Ternary Complex species", J. Memb. Sci., 105(3), pp.217-226 (1995).
[180]I. Van de Voorde, L. Pinoy and R. F. De Ketelaere, "Recovery of Nickel Ions by Supported Liquid Membrane (SLM) Extraction", J. Membr. Sci., 234(1-2), 11-21 (2004).
[181]B. Swain, J. Jeong, J. C. Lee and G. H. Lee, "Extraction of Co(II) by Supported Liquid Membrane and Solvent Extraction Using Cyanex 272 as an Extractant: A Comparison Study", J. Membr. Sci., 288(1-2), pp.139-148 (2007).
[182]P. R. Danesi, L. Reichley-Yinger, C. Cianetti and P. G. Rickert, "Separation of cobalt and nickel by liquid-liquid extraction and supported liquid membranes with Di(2,4,4-trimethylpentyl)-phosphinic acid Cyanex 272", Solvent Extraction and Ion Exchange, Vol. 2, No. 6, pp.781-814 (1984).
[183]T. C. Huang, C.-T. Huang, "The mechanism of transport of uranyl nitrate across a solid supported liquid membrane using tributyl phosphate as mobile carrier", J. Membr. Sci., 29(3) pp.295-308 (1986).
[184]T. C. Huang, R. S. Juang, "Transport of Zinc through a Supported Liquid Membrane Using Di(2-ethylhexyl) Phosphoric Acid as a Mobile Carrier", J. Memb. Sci., Vol. 31, No. 2,No. 3 pp.209-226 (1987).
[185]F. Islam and R. K. Biswas, "The Solvent Extraction of Vanadium(IV) with HDEHP in Benzene and Kerosene: The Solvent Extraction of Vanadium(IV) from Sulphuric Acid Solution with Bis-(2-Ehylhexyl) Phosphoric Acid in Benzene and Kerosene", Journal of Inorganic and Nuclear Chemistry, Vol. 42, pp.415-420 (1980).
[186]A. I. Alonso, B. Galan, J. A. Irabien and M. I. Ortiz, "Separation of Cr(VI) with Aliquat 336: Chemical Equilibrium Modeling", Sep. Sci. Technol., 32(9), 1543-1555 (1997).
[187]A. I. Alonso, A. Irabien and M. I. Ortiz, "Nondispersive Extraction of Cr(VI) with Aliquat 336: Influence of Carrier Concentration", Sep. Sci. Technol., 31(2), pp.271-282 (1996).
[188]B. Galan, A. M. Urtiaga, A. I. Alonso, J. A. Irabien and M. I. Ortiz, "Extraction of Anions with Aliquat 336: Chemical Equilibrium Modeling", Ind. Eng. Chem. Res., 33(7), 1765-1770 (1994).
[189]S. H. Lin, H. C. Kao, S. H. Huang and R. S. Juang, "Equilibrium and Kinetic Studies of the Extraction of Chelated Copper(II) Anions with Aliquat 336", J. Chem. Tech. Biotechnol., 77(2), 168-174 (2002).
[190]H. J. Bart, H. J. and H. P. Rousselle, "Microkinetics and Reaction Equilibria in the System ZnSO4/D2EHPA/Isododecane," Hydrometallurgy, 51(3), 285-298 (1999).
[191]R. S. Juang, and S. H. Lee, "Analysis of the Transport Rates of Europium(III) Across an Organophosphinic Acid Supported Liquid Membrane," J. Membr. Sci., 110(1), 13-23 (1996).
[192]H. Matsuyama, Y. Miyake, Y. Izumo and M. Teramoto, "Kinetics and Mechanism of Metal Extraction with Acidic Organophosphorus Extractants (I): Extraction Rate Limited by Diffusion Process," Hydrometallurgy, 24(1), 37-51 (1990).
[193]J. S. Newman, "Electrochemical Systems, "Prentice-Hall, Englewood Cliffs, New York (1991).
[194]www.kitco.com :全球瀏覽量最大的貴金屬行業新聞和報價的資訊網站


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top