跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/24 21:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊敏姿
研究生(外文):Min-Tzu Chuang
論文名稱:應用資料探勘技術探討扣件關鍵檢驗參數
論文名稱(外文):Using Data Mining Techniques to Explore the Critical Inspection Parameters in Fastener Manufacturing.
指導教授:劉建浩劉建浩引用關係
指導教授(外文):James Liou
口試委員:蔡介元王河星
口試日期:2014-06-17
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:工業工程與管理系碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:76
中文關鍵詞:扣件關鍵參數支配性約略集合倒傳遞類神經網路
外文關鍵詞:FastenersCritical Inspection ParametersDominance Rough Set AnalysisBack-Propagation Neural Network
相關次數:
  • 被引用被引用:1
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣扣件的生產量佔全世界超過六分之一,年產值更高達千億元新台幣。但是近年來受到中國大陸及東南亞國家的雙重夾擊,而我國的廠商大都是代工廠,勢必要進行轉型,朝向高附加價值的產品進行研發與生產。然而,其生產效率有遲緩現象,究其原因,主要因為達到高品質的自我要求,相關製程的檢驗極為嚴格,許多製程都因檢驗程序未完成而無法順利展開。
過去關鍵製程參數的決定多仰賴工程師的經驗,但隨著新製程不斷的開發,此種模式已不符企業要求。資料探勘為一種將資料轉化為知識的方法,本研究將採用其支配性約略集合 (Dominance Rough Set Analysis, DRSA)模式,此模式的優點是可以處理資料間不一致的問題。利用支配性約略集合找出關鍵的檢驗參數,提供產品可允收標準,減少不必要的製程檢驗程序,同時建議關鍵製程參數設置的重點。並且以倒傳遞類神經網路驗證其分類正確率。本論文以某扣件工廠為例,建構尋找關鍵檢驗參數系統,結果顯示鈑金到頂端的距離、大孔同心度、耳下安全島、尾部外徑、耳上平面、花齒外徑、身體長度、花齒長度、頭部厚度、安裝負載經過訓練後分類正確率高達97.6%,證明此方法可以得更好的分類結果。


Taiwan has produced more than one sixth of the fastener in the world. The revenue exceeded NT$100 billion in recent years. Recently, the development of Mainland China and Southeast countries have severely threaded the survival of Taiwan companies and most of the companies are suppliers and do not have their own brands. In order to keep the advantages of Taiwan fastener industry, the companies have to transform into higher levels of products and devoted to research and development. However, firms have spent most of their efforts on marketing expanding and new product development, thus their production efficiency has slow down. After carefully examination, they found the root cause was due to many inspections delayed the production rate. Therefore, how to identify the key inspection parameters and reduce some unnecessary inspection procedures are the objectives of this study.
The key manufacturing parameters were decided by engineer experience in the past, but this method is not fit in today’s enterprise requirements. Data mining is a technique that transfers data into knowledge. Through data collection and analysis, analyzers can find the association rules between the data. This study will apply Dominance Rough Set Analysis (DRSA) to decide the key inspection parameters and provide acceptable standard. DRSA is a derivation of Classical Rough Set Analysis (CRSA) but DRSA can handle the inconsistent problems. The contribution is that the case company can obtain the critical inspection parameters, decrease the unnecessary examinations, and increase its production rate. At the same time, suggesting what manufacturing process focus. To verify the results, this study uses back-propagation neural network training model to get correct rate. Finally, this proposal compares the correct rate of CRSA with DRSA results. In the study, a fastener company is chosen as an example. According to this real data, the proposed approach provides better classification results.


摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目綠 viii
圖目錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究方法 4
1.4 研究範圍與架構 5
第二章 文獻探討 7
2.1 扣件背景 7
2.1.1 扣件產業現況 8
2.1.2 扣件種類 12
2.1.3 扣件製造程序 15
2.1.4 扣件相關研究 18
2.2 關鍵參數相關文獻 21
2.3 資料探勘 23
2.4 支配性約略集合 28
2.5 倒傳遞類神經網路 30
第三章 研究方法 34
3.1 支配性約略集合 35
3.2 倒傳遞類神經網路 43
第四章 實證案例 46
4.1 資料來源與輸入 46
4.2 支配性約略集合挑選關鍵檢驗參數 51
4.2.1 近似的品質 51
4.2.2 產生的規則 52
4.3 倒傳遞類神經網路分類與比較 56
4.4小結討論 58
第五章 討論與分析 61
第六章 結論與未來建議 64
6.1 結論 64
6.2 未來研究建議 65
6.2.1 實務面 65
6.2.2 學術面 66
參考文獻 67


1.王治強 (2012),「螺絲扣件業價值及其動因之比較研究─以三星 vs 春雨公司為例」,嘉義,國立中正大學碩士論文。
2.池文海和李維斌 (2001),「運用類神經網路於銀行服務品質之研究─以花蓮地區銀行業為例」,工業工程學刊,第18卷,第4期,第49-58頁。
3.李榮顯 、陳彥儒、王水鐸 (2004),「利用凹槽設計於圓柱鍛粗試驗之可行性探討」, 鍛造,第13卷,第4期,第29-34頁。
4.李來錫、葉惠忠、戴宏仁 (2006),「應用商業智慧於製程參數挑選之研究」,管理科學研究,第3卷,第1期,第61-71頁。
5.林恆勝、許源泉、楊東昇、楊政峰、歐聖堂 (2007),「六角螺栓近淨形頂鍛成形模擬」,鍛造, 第16卷,第1期, 第5-16頁。
6.金揚傑 (2010),「推薦來源對使用學術電子書意願之影響」,交通大學管理科研究所博士論文,新竹。
7.陳政順、沈忠信 (2009),「電腦連接器卡扣結構件之分析與最佳化設計」,技術學刊,第24卷,第2期, 第99-105頁。
8.郭展銓 (2011),「失效模式效應分析在扣件熱處理製程上之應用」,品質月刊,第47卷,第12期,第23-28頁。
9.傅兆章和彭湘儀 (2004),「利用特殊熱處理技術改善精密模具壽命之研究」,鍛造, 第13卷,第4期 ,第1-5頁。
10.葉怡成 (2001),「應用類神經網路」,儒林圖書有限公司,全文。
11.楊錦洲和陳百盛 (2005),「應用類神經網路於顧客群之分類分析」,管理與系統,第12卷,第3期,第43 - 65頁。
12.溫坤禮、永井正武、張廷政、溫惠筑 (2008),「粗糙集入門及應用」。五南圖書出版股份有限公司,全文。
13.廖述賢和溫志皓 (2011),「資料探勘理論與應用:以IBM SPSS Modeler為範例」,博碩出版社,全文。
14.盧昆宏、歐惠鳳、魏振育 (2010),「以TRIZ及DEMATEL探索計劃實驗法之參數」,永續發展管理討論會文集,第11屆。
15.Asnafi, N. (1999), “On Tool Stresses in Cold Heading of Fasteners”, Engineering Failure Analysis, 6: 321-335.
16.Aida, T., Takatsuji, N., Matsuki, K., Ohara, T., Kamado, S. (2005), “Improvement insurface properties of extrusions from Mg-Al-Zn based alloy machined chips”, Journal of Japan Institute of Light Metals, 55(9): 400-404.
17.Azushima, A., Bay, N., Groche, P., Ishibashi, I., Merklein, M., Morishita, M., Nakamura, T., Schmid, S., Yoshida, M. (2010), “Environmentally benign tribo-systems for metal forming”, CIRP Annals - Manufacturing Technology, 59(2): 760-780.
18.Abastante, F., Asunisl, S., Bottero, M., Greco, S., Lami, I.M. (2010), “The Dominance-based Rough Set Approach for Sustainability Assessment: The Evaluation of Alternative Transport Links between Two Italian Cities”, Sustainable Architecture and Urban Development.
19.Ahn, K.(2012), “Effective product assignment based on association rule mining in retail”, Expert Systems with Applications, 39(16): 12551-12556.
20.Alizadehsania, R., Habibia, J., Hosseinia, M. J., Mashayekhia, H., Boghratia, R., Ghandehariouna, A., Bahadorianb, B., Sanib, Z. A. (2013), “A data mining approach for diagnosis of coronary artery disease”, Computer Methods and Programs in Biomedicine, 111(1): 52-61.
21.Ahmadzadeha, M., Fard, A. H., Saranjamb, B., Salimi, H.R. (2013), “Prediction of residual stresses in gas arc welding by back propagation neural network”, NDT & E International, 52: 136-143.
22.Bertels, K., Jacques, J. M., Neuberg, L., Gatot, L. (1999), “Qualitative Company Performance Evaluation: Linear Discriminant Analysis and Neural Network Models,” European Journal of Operational Research, 115(3): 608-615.
23.Beynon, M.J. and Peel, M.J. (2001), “Variable precision rough set theory and data discretisation: an application to corporate failure prediction”, Omega: International Journal of Management Science, 29(6): 561-576.
24.Blaszczyn’ ski, J., Greco, S., Slowin’ ski, S. (2007), “Multi-criteria classification – A new scheme for application of dominance-based decision rules”, European Journal of Operational Research, 181(3): 1030–1044.
25.Bay, N., Olssonb, D.D. Andreasenc J.L. (2008), “Lubricant test methods for sheet metal forming’’, Tribology International ,41(9-10): 844–853.
26.Bhattacharyya, S., Jha, S., Tharakunnel, K., Westlandd,C. (2011), “Data mining for credit card fraud: A comparative study”, Decision Support Systems, 50(3): 602-613.
27.Cormack ,C.M. and Monaghan, J. (2001) , “ A Finite element Analysis of Cold-Forging Dies Using Two-and Three-Dimensional Models”, Journal of Materials Processing Technology, 118: 286-292.
28.Cao, Y., Wan, G., Wang, F. (2011) “Predicting Financial Distress of Chinese Listed Companies Using Rough Set Theory and Supper Vector Machine”, Asia-Pacific Journal of Operational Research, 28(1): 95-109.
29.Cakıroğlu, R. and Cirb, A. (2013), “Optimization of cutting parameters on drill bit temperature in drilling by Taguchi method”, Measurement, 46(9): 3525-3531.
30.Caminero, M.A. , Lopez-Pedros, M., Pinn, C. , Soutis, C. (2013), “Damage monitoring and analysis of composite laminates with an open hole and adhesively bonded repairs using digital image correlation”, Composites: Part B, 53: 79-91.
31.Dimitras,A.I., Slowinski,R., Susmaga,R., Zopounidis,C. (1999), “Business failure prediction using rough sets”, European Journal of Operational Research,114 :263-280.
32.Fayyad, U. M. and Irani, K. B. (1993), “Multi-interval discretization of continuous valued attributes for classification learning”, Proceedings of the 13th International Joint Conference on Artificial Intelligence, 1022-1027.
33.Greco, S., Matarazzo, B., Slowinski, R. (1998)., “ A new rough set approach to evaluation of bankruptcy risk”, Operational Tools in the Management of Financial Risks, 121-136.
34.Goh, C. and Law, R. (2003), “Incorporating the rough sets theory into travel demand analysis”, Tourism Management, 24(5): 511-517.
35.Garat, V., Bernhart, G., Hervy, L. (2004), “Influence of design and process parameters service life of nut hot forging die”, Journal of Material Processing Technology, 147(3):359-369.
36.Gurbuz, F., Ozbaki, L., Yapici, H. (2011), “Data mining and preprocessing application on component reports of an airline company in Turkey”, Expert Systems with Applications, 38(6): 6618-6626.
37.Hajime, Y., Kenichi, I., Hajime, M. (2005), “An innovative product development process for resolving fundamental conflicts”, Journal of the Japan Society for Precision Engineering, 71(2): 216-222.
38.Hassanien, A.E., Abdelhafez, M.E., Own, H.S. (2008), “Rough sets data analysis in knowledge discovery: a case of Kuwaiti diabetic children patients”, Advances in Fuzzy Systems, 8(2): 1-13.
39.Hsieh, L.F., Hsieh, S.C., Tai, P.H. (2011), “Enhanced stock price variation prediction via DOE and BPNN-based optimization”, Expert Systems with Applications, 38(11): 14178–14184.
40.Hamidinejad , S.M., Kolahan , F., Kokabi, A.H. (2012), “The modeling and process analysis of resistance spot welding on galvanized steel sheets used in car body manufacturing”, Materials and Design, 34: 759-767.
41.Jackson, A.G., Leclair, S.R., Ohmer, M.C., Ziarko, W., Al-Kamhwi, H. (1996), “Rough sets applied to materials data”, Acta Materialia, 44(11): 4475-4484.
42.Ko, D.C., Kim, D.H., Kim, B.M., Choi, J.C. (1998), “Methodology of Preform Design Considering Workability in Metal Forming by the Artificial Neural Network and Taguchi Method”, Journal of Materials Processing Technology, 80-81: 487-492.
43.Koksal, G., Batmaz, I., Testikc, M.C.(2011), “A review of data mining applications for quality improvement in manufacturing industry”, Expert Systems with Applications, 38(10):13448-13467.
44.Kirlidog, M. and Asuk, C. (2012), “A fraud detection approach with data mining in health insurance”, Procedia - Social and Behavioral Sciences, 62: 989-994.
45.Ko, Y. C., Chen, Y. C., Huang, Y.Y., Tzeng, G. H. (2012), “A fuzzy set extension of DRSA on the better life in happiness”, Proceedings of 2012 International Conference on Fuzzy Theory and Its Applications, 113-118.
46.Kuoa, R. J., Shiehb, M.C., Zhangc, J.W., Chen, K.Y. (2013), “The application of an artificial immune system-based back-propagation neural network with feature selection to an RFID positioning system”, Robotics and Computer-Integrated Manufacturing, 29(6):431-438.
47.Karami, J., Alimohammadi, A., Seifouri, T. (2014), “Water quality analysis using a variable consistency dominance-based rough set approach”, Computers, Environment and Urban Systems, 43: 25-33.
48.Kuduzović, A., Poletti, M.C., Sommitscha, C., Domankova, M., Mitschec, S., Kienreichd, R. (2014), “Investigations into the delayed fracture susceptibility of 34CrNiMo6 steel, and the opportunities for its application in ultra-high-strength bolts and fasteners”, Materials Science & Engineering, 590: 66–73.
49.Lee, R.S., Jou, J.L., Ho, Y.C. (1999), “Optimization of Parameters Affecting Die
Life in Warm Forging”, 32nd ICFG Plenary Meeting, Slovenia.
50.Lee, T. S., Chiu, C. C., Lu, C. J., Chen, I. F. (2002), “Credit Scoring Using the Hybrid Neural Discriminant Technique”, Expert Systems with Applications, 23(3):.245-254.
51.Liou, J.H. (2009), “A novel decision rules approach for customer relationship management of the airline market”, Expert Systems with Applications, 36(3): 4374-4381.
52.Liou, J.H., and Tzeng, G.H. (2010), “A Dominance-based Rough Set Approach to customer behavior in the airline market”, Information Sciences, 180(11): 2230-2238.
53.Liao, S.H., Chen, Y.J., Hsieh, H. H. (2011), “Mining customer knowledge for direct selling and marketing”, Expert Systems with Applications,38(5):6059-6069.
54.Liao, S.H. and Chou, S, Y. (2013), “Data mining investigation of co-movements on the Taiwan and China stock markets for future investment portfolio”, Expert Systems with Applications, 40(5): 1542-1554.
55.Mangiameli, P. and West, D. (1999), “An Improved Neural Classification Network for the Two-Group Problem,” Computers & Operations Research, 26(5): 443-460.
56.Maciag, T., Hepting, H.D., Robert, H. J. (2007), “Evaluation of a Dominance-Based Rough Set Approach to Interface Design”, Frontiers in the Convergence of Bioscience and Information Technologies 2007, 409-416.
57.Neaupane, K. M. and Achet, S. H. (2004), “Use of Back-propagation Neural Network for Landside Monitoring: a Case Study in the Higher Himalaya”, Engineering Geology, 74(3-4):213-226.
58.Nassiri, H., Rezaei, A. (2012), “Air itinerary choice in a low-frequency market: A decision rule approach”, Journal of Air Transport Management, 18(1): 34-37.
59.Oh S.I., Wu W.T., and Tang J.P. (1992), “Simulations of cold forging processes by the DEFORM system”, Journal of Materials Processing Technology, 35: 357-370.
60.Ou, H. and Balendr, R. (1998), “Preform design for forging of aerofoil sections using FE simulation”, Journal of Materials Processing Technology, 80-81: 144-148.
61.Pawlak, Z. (1982), “Rough sets”, International Journal of Computer and Information Science, 11(5): 341-356.
62.Pawlak, Z. (1997), Rough sets, In: T.Y. Lin and N. Cercone (Eds.), “Rough Sets and Data Mining: Analysis for Imprecise Data”, Norwell, MA: Kluwer Academic Publishers.
63.Partovi, F. Y. and Anandarajan, M. (2002), “Classifying Inventory Using an Artificial Neural Network Approach”, Computers & Industrial Engineering, 41(4):.389-404.
64.Pawlak, Z. (2002), “Rough Sets and intelligent data analysis”, Information Sciences, 147(1): 1-12.
65.Peters, G., Poon, S. (2011), “Analyzing IT business values – A Dominance based Rough Sets Approach perspective”, Expert Systems with Applications, 38(9): 11120–11128.
66.Shin, Y. and Kawai, K.I. (1992), “A study of optimum die-design in the heading process with two blows”, Journal of Materials Processing Technology, 30: 67-77.
67.Slowinski, R. and Zopounidis, C. (1995), “Application of the rough set approach to evaluation of bankruptcy risk”, International Journal of Intelligent Systems in Accounting, Finance and Management, 4(1): 27-41.
68.Shyng, J.Y., Wang, F.K., Tzeng, G.H., Wu, K.S. (2007), “Rough Set Theory in analyzing the attributes of combination values for the insurance market”, Expert Systems with Applications, 32(1): 56-64.
69.Sen, B., Ucar, E., Delenc, D.(2012), “Predicting and analyzing secondary education placement-test scores: A data mining approach”, Expert Systems with Applications, 39 (10):9468-9476.
70.Ting, S.L., Tse, Y.K., Ho, G.T.S., Chung, S.H., Pang, G.(2013), “Mining logistics data to assure the quality in a sustainable food supply chain: A case in the red wine industry”, International Journal of Production Economics.
71.Vickers, G. W., Plumtree, A., Sowerby, R. and Duncan, J. L. (1975), “Simulation of the Heading Process”, Journal of Engineering Materials and Technology, 97(2): 126-135.
72.Vellido, A., Lisboa, P. J. G., Vaughan, J. (1999), “Neural Networks in Business: A Survey of Applications (1992–1998),” Expert Systems with Applications, 17: 51-70.
73.Verbekea, W., Dejaeger, K., Martens, D., Hur, J., Baesens, J. (2012), “New insights into churn prediction in the telecommunication sector: A profit driven data mining approach”, European Journal of Operational Research, 218(1): 211-229.
74.Wang, Y. F. (2003), “Mining stock price using fuzzy rough set system”, Expert Systems with Applications, 24 (1): 13–23.
75.Wagner, K., Putz, A., Engel, U. (2006), “Improvement of tool life in cold forging by locally optimized surfaces”, Journal of Materials Processing Technology, 177: 205-209.
76.Wong, J.C. and Chung, Y.S. (2007), “Rough set approach for accident chains exploration”, Accident Analysis and Prevention, 39(4): 629-637.
77.Wei, Y., Chen, M.C. (2012), “Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks”, Transportation Research Part C, 21(1): 148-162.
78.Yeh, C.C., Lin F., Hsu, C.Y. (2012), “A hybrid KMV model, random forests and rough set theory approach for credit rating”, Knowledge-Based Systems, 33: 166-172.
79.Yeh, C.C., Chi, D.J , Lin Y.R. (2014), “Going-concern prediction using hybrid random forests and rough set approach” ,Information Sciences, 254(1): 98-100.
80.Zhu, D., Premkumar, G., Zhang, X. Chu, C.H. (2001), “Data Mining for Network Intrusion Detection: A Comparison of Alternative Methods”, Decision Sciences, 32(4): 635-660.
81.Zhai, L.Y., Khoo, L.P., Fok, S.C. (2002), “Feature extraction using rough set theory and genetic algorithms an application for the simplification of product quality evaluation”, Computers and Industrial Engineering, 43(4): 661-676.
82.Zhai, L.Y., Khoo, L.P., Zhong, Z.W. (2009), “A dominance-based rough set approach to Kansei Engineering in product development”, Expert Systems with Applications, 36(1): 393–402.
83.Zan, X. M. (2010), “Dominance-based Rough Set Study on the Quality Assessment of Enterprise Leaders”, 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, 456-459.
84.Zaras, K., Marin, J.C., Boudreau-Trude, B. (2012), “Dominance-Based Rough Set Approach in Selection of Portfolio of Sustainable Development Projects”, American Journal of Operations Research, 2(4): 502-508.
85.Zheng, X., Geng,C., Qu, T.F. (2012), “ Numerical Analysis on Dynamic Behavior of damping fasteners in Rail Transit Viaduct System Under Wheel Load Drop”, Applied Mechanics and Materials, 226-228: 1527-1530.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 3.李榮顯 、陳彥儒、王水鐸 (2004),「利用凹槽設計於圓柱鍛粗試驗之可行性探討」, 鍛造,第13卷,第4期,第29-34頁。
2. 3.李榮顯 、陳彥儒、王水鐸 (2004),「利用凹槽設計於圓柱鍛粗試驗之可行性探討」, 鍛造,第13卷,第4期,第29-34頁。
3. 4.李來錫、葉惠忠、戴宏仁 (2006),「應用商業智慧於製程參數挑選之研究」,管理科學研究,第3卷,第1期,第61-71頁。
4. 4.李來錫、葉惠忠、戴宏仁 (2006),「應用商業智慧於製程參數挑選之研究」,管理科學研究,第3卷,第1期,第61-71頁。
5. 5.林恆勝、許源泉、楊東昇、楊政峰、歐聖堂 (2007),「六角螺栓近淨形頂鍛成形模擬」,鍛造, 第16卷,第1期, 第5-16頁。
6. 5.林恆勝、許源泉、楊東昇、楊政峰、歐聖堂 (2007),「六角螺栓近淨形頂鍛成形模擬」,鍛造, 第16卷,第1期, 第5-16頁。
7. 7.陳政順、沈忠信 (2009),「電腦連接器卡扣結構件之分析與最佳化設計」,技術學刊,第24卷,第2期, 第99-105頁。
8. 7.陳政順、沈忠信 (2009),「電腦連接器卡扣結構件之分析與最佳化設計」,技術學刊,第24卷,第2期, 第99-105頁。
9. 8.郭展銓 (2011),「失效模式效應分析在扣件熱處理製程上之應用」,品質月刊,第47卷,第12期,第23-28頁。
10. 8.郭展銓 (2011),「失效模式效應分析在扣件熱處理製程上之應用」,品質月刊,第47卷,第12期,第23-28頁。