跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/21 23:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林士勛
研究生(外文):Shih-Hsun Lin
論文名稱:分枝狀聚酯之合成與流變性質
論文名稱(外文):Rheological Properties and Synthesis Of Branched Polyesters
指導教授:鄭國忠鄭國忠引用關係
指導教授(外文):Kuo-Chung Cheng
口試委員:林達鎔芮祥鵬曾勝茂
口試委員(外文):Dar-Jong Lin
口試日期:2014-06-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:122
中文關鍵詞:增韌劑分枝狀聚酯增韌流變性質熱性質
外文關鍵詞:toughnessbranched polyesterrheologythermal analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用環氧樹脂以及其他具反應性官能基單體經由開環聚合反應後產生分枝狀聚脂,合成後比較不同結構分枝狀聚酯的差異,並利用熱分析探討不同結構所造成的物性變化,以及使用流變儀探討不同結構分枝狀聚酯的流體性質。利用凝膠滲透色層分析儀(GPC)測量其分子量,微差掃描熱卡計(DSC)及熱重分析儀(TGA)分析其熱性質,傅立葉轉換紅外線光譜儀(FTIR)與核磁振共儀(NMR)鑑定其結構,並利用錐-平板式流變探討高分子流變性質之影響。結果發現四種分枝高分子之重量分子量分布於4200~9000g/mol,由滴定方法測其轉化率皆為90%以上,其玻璃轉移溫度(Tg)則都低於室溫,依結構的不同介於-42~-14oC之間。分子作用力越大,或含結晶鏈段,此現象導致高分子的流動性下降。所合成之分枝狀聚酯高分子,在頻率與剪切速率較高時將會呈現剪切稀釋(shear thinning)非牛頓流體現象,可利用Carreau-Yasuda方程式 描繪其剪切變稀的變化,並且計算其鬆弛時間,觀察出鬆弛時間會隨著溫度上升而降低,與利用Havriliak –Negami 方程式描述動態儲存模數與損失模數和頻率之關係。本研究合成之分枝狀聚酯預期可作為增韌劑或者牙醫材料之可塑劑。

Branched polyesters with different molecular structures were synthesized via a stepwise polymerization of various epoxy resins with different functional monomers. The chemical structures of polymers were characterized by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR). The weight-average molecular weights of the prepared polymers were from about 4200 through 9000 g/mol determined by a GPC. The glass transition temperatures of the aliphatic branched polyesters were about from -41 through -14oC, which were primarily dependent on the chemical structures of the polymers. A Carreau-Yasuda model: was proposed to descript the shear-thinning properties of the branched polyesters. Most of the prepared polymers behaved essentially as Newtonian fluids at temperature higher than 70oC, and shear rate less than 1000 1/s. The viscoelastic properties of the branched polymers were further measured. It was found that the shear storage modulus dependent on the frequency was different from that of regular linear polymers. And use Havriliak-Negami model: to describe the dynamic storage modulus and loss modulus dependent on frequency. It is expected that the prepared branched polyesters can be used as toughening agent or plasticizer in dental material.

目錄
摘要....................................i
ABSTRAC...............................iii
致謝.....................................v
目錄....................................vi
表目錄.................................viii
圖目錄...................................ix
第一章 緒論................................1
1.1 研究動機與目的..........................1
1.2預期目標................................2
第二章 原理與文獻回顧........................3
2.1 分支狀高分子簡介.........................3
2.2 分枝高分子與線性高分子特性比較.............5
2.3環氧樹脂簡介.............................6
2.4 環氧樹脂特性及應用.......................7
2.5 環氧樹脂的輔助材料.......................8
2.6 分枝狀聚酯文獻 .........................10
2.7分枝狀聚酯的應用.........................18
2.8 流變學簡介.............................19
2.8.1 流變類型.............................20
2.8.2 流變儀..............................23
2.9 穩態剪切行為............................27
2.9.1 高分子的剪稀薄特性.....................28
2.10 動態流變行為.......................30
2.11 流變相關文獻回顧........................30
2.13 溫度的影響-流動活化能................35
2.14 Carreau-Yasuda 模式...............36
2.15 Havriliak – Negami 模式...............36
2.16聚摻合物的相容性質........................37
2.17增塑理論................................38
第三章 實驗內容..............................41
3.1 實驗藥品................................41
3.2 實驗設備................................42
3.3 實驗流程與步驟...........................46
3.3.1 實驗流程..............................46
3.3.2脂肪族分枝狀聚酯合成.....................46
3.3.3 高分子分子量測量.......................48
3.3.4 傅立葉轉換紅外線光譜儀 ..................48
3.3.5 核磁共振儀............................48
3.3.6 酸價滴定..............................48
3.3.7 玻璃轉移溫度測量.......................49
3.3.8 熱裂解性質............................49
3.3.9 流變性質..............................49
3.3.10 試片製備流程.........................50
3.3.11 Izod衝擊測試.........................50
第四章 結果與討論..........................51
4.1 分枝狀高分子之合成.......................51
4.2 分枝狀高分子之分析.......................52
4.2.1 滴定分析(計算轉化率)...................52
4.2.2 分子量測量............................53
4.2.3 FT-IR分析 (結構分析)..................53
4.2.4 核磁共振儀(結構分析)...................54
4.3 分枝狀脂肪族聚酯高分子之熱性質分析......55
4.3.1 玻璃轉移溫度分析(DSC)...................55
4.3.2熱穩定性................................56
4.4含脂肪族鏈段分枝狀高分子之流變性..............57
4.4.1穩態流變性質............................57
4.4.2 動態流變性質...........................62
4.5含分枝狀聚酯之環氧樹脂增韌測試...............68
4.5.1 Izod耐衝擊分析..........................68
4.5.2 玻璃轉移溫度分析(DSC)...................69
4.5.2 熱穩定性...............................69
第五章 結論..................................100
References.................................102
Appendix............... ...................113
符號彙編.....................................122


[1]谢尔斯, "现代聚酯," ed 北京: 化学工业出版社, 2006.
[2]廖彥程, "利用多官能基單體及罩蓋劑合成超分枝高分子," 碩士論文, Ed., ed. 國立臺北科技大學化學工程研究所: 台北, 2008.
[3]梁仁耀, "Dgeba 型環氧樹脂與4,4''-亞甲基雙苯胺合成超分枝高分子," 碩士論文, Ed., ed. 國立臺北科技大學化學工程研究所: 台北, 2009.
[4]C. Gao and D. Yan, "Hyperbranched polymers: from synthesis to applications," Progress in Polymer Science, vol. 29, pp. 183-275, 2004.
[5]B. Voit, "New Developments in Hyperbranched Polymers," Journal of Polymer, vol. 38, pp. 2505-2525, 2000.
[6]Y. H. Kim, "Hyperbranched polymers 10 years after," Journal of Polymer Science Part A: Polymer Chemistry, vol. 36, pp. 1685-1698, 1998.
[7]K.Uhrich, Hyperbranched polymers for drug delivery vol. 5. Cambridge, ROYAUME-UNI: Elsevier, 1997.
[8]H. Liu, J. H. Nasman, and M. Skrifvars, "Radical alternating copolymerization: A strategy for hyperbranched materials," Journal of Polymer Science Part A: Polymer Chemistry, vol. 38, pp. 3074-3085, 2000.
[9]C. H. C. Nguyen, R. Miller, E. Huang, J. Hedrick, R. Gauderon and J. Hilborn, "Hyperbranched polyesters as nanoporosity templating agents for organosilicates," Macromolecules, vol. 33, pp. 4281-4284, 2000.
[10] Y. A. T. Sato, M. Seno and T. Hirano, "Initiator-Fragment Incorporation Radical Polymerization of Divinyl Adipate with Dimethyl 2, 2 ‘-Azobis (isobutyrate): Kinetics and Formation of Soluble Hyperbranched Polymer," Macromolecules, vol. 38, pp. 1627-1632, 2005.
[11] J. P. Chen, Han; Law, Charles C. W.; Dong, Yuping; Lam, Jacky W. Y.; Williams, Ian D.; Tang, Ben Zhong, "Hyperbranched poly (phenylenesilolene) s: synthesis, thermal stability, electronic conjugation, optical power limiting, and cooling-enhanced light emission," Macromolecules, vol. 36, pp. 4319-4327, 2003.
[12] Y. Bai, N. Song, J. P. Gao, X. Sun, X. Wang, G. Yu, and Z. Y. Wang, "A new approach to highly electrooptically active materials using cross-linkable, hyperbranched chromophore-containing oligomers as a macromolecular dopant," J Am Chem Soc, vol. 127, pp. 2060-2061, Feb 23 2005.
[13] B. Voit, "Hyperbranched polymers—All problems solved after 15 years of research?," Journal of Polymer Science Part A: Polymer Chemistry, vol. 43, pp. 2679-2699, 2005.
[14] D. Yan, A. H. E. Muller, and K. Matyjaszewski, "Molecular Parameters of Hyperbranched Polymers Made by Self-Condensing Vinyl Polymerization. 2. Degree of Branching†," Macromolecules, vol. 30, pp. 7024-7033, 1997/11/01 1997.
[15] K.-C. Cheng, T.-H. Chuang, T.-H. Tsai, W. Guo, and W.-F. Su, "Model of hyperbranched polymers formed by monomers A2 and Bg with end-capping molecules," European Polymer Journal, vol. 44, pp. 2998-3004, 2008.
[16] D. P. Bernal, L. Bedrossian, K. Collins, and E. Fossum, "Effect of Core Reactivity on the Molecular Weight, Polydispersity, and Degree of Branching of Hyperbranched Poly(arylene ether phosphine oxide)s," Macromolecules, vol. 36, pp. 333-338, 2003/01/01 2003.
[17]S.-J. Wang, X.-D. Fan, Q.-F. Si, J. Kong, Y.-Y. Liu, W.-Q. Qiao, and G.-B. Zhang, "Preparation and characterization of a hyperbranched polyethoxysiloxane based anti-fouling coating," Journal of Applied Polymer Science, vol. 102, pp. 5818-5824, 2006.
[18] T. Kashyap and D. C. Venerus, "Stress Relaxation in Polymer Melts Following Equibiaxial Step Strain," Macromolecules, vol. 43, pp. 5874-5880, 2010/07/13 2010.
[19] C. D. McGrady, C. W. Seay, S. M. Mazahir, and D. G. Baird, "Effect of sparse long-chain branching on the step-strain behavior of a series of well-defined polyethylenes," Polymer Engineering & Science, vol. 50, pp. 1424-1432, 2010.
[20]A. S. Nasar, M. Jikei, and M.-a. Kakimoto, "Synthesis and properties of polyurethane elastomers crosslinked with amine-terminated AB2-type hyperbranched polyamides," European Polymer Journal, vol. 39, pp. 1201-1208, 2003
[21] 王德中, "環氧樹脂生產與應用," ed 北京: 化學工業出版社, 2001.
[22] C.A. May, Epoxy Resins: Chemistry and Technology, Marcel Dekker, New York,1988.
[23] 《合成樹脂及塑料技術全書》編委會, "合成树脂及塑料技术全书," ed 北京: 中國石化出版社, 2005.
[24] 陈乐怡,张从容,雷燕湘, "常用合成树脂的性能和应用手册," ed 北京: 化学工业出版社, 2002.
[25] G . G. Buonocore, L. Schiavo, I. Attianese, and A. Borriello, "Hyperbranched polymers as modifiers of epoxy adhesives," Composites Part B: Engineering, vol. 53, pp. 187-192, 2013.
[26]S. Pramanik, R. Konwarh, K. Sagar, B. K. Konwar, and N. Karak, "Bio-degradable vegetable oil based hyperbranched poly(ester amide) as an advanced surface coating material," Progress in Organic Coatings, vol. 76, pp. 689-697, 2013.
[27] D. Manjula Dhevi, S. N. Jaisankar, and M. Pathak, "Effect of new h hyperbranched polyester of varying generations on toughening of epoxy resin hr through interpenetrating polymer networks using urethane linkages," European P o Polymer Journal, vol. 49, pp. 3561-3572, 2013.
[28] T. Li, H. Qin, Y. Liu, X. Zhong, Y. Yu, and A. Serra, "Hyperbranched polyester as additives in filled and unfilled epoxy-novolac systems," Polymer, vol. 53, pp. 5864-5872, 2012.
[29] R. Reul, J. Nguyen, A. Biela, E. Marxer, U. Bakowsky, G. Klebe, and T. Kissel, "Biophysical and biological investigation of DNA nano-complexes with a non-toxic, biodegradable amine-modified hyperbranched polyester," International Journal of Pharmaceutics, vol. 436, pp. 97-105, 2012.
[30] R. Reul, J. Nguyen, A. Biela, E. Marxer, U. Bakowsky, G. Klebe, and T. Kissel, "Biophysical and biological investigation of DNA nano-complexes with a non-toxic, biodegradable amine-modified hyperbranched polyester," International Journal of Pharmaceutics, vol. 436, pp. 97-105, 2012.
[31] D. Foix, A. Serra, L. Amparore, and M. Sangermano, "Impact resistance enhancement by adding epoxy ended hyperbranched polyester to DGEBA photocured thermosets," Polymer, vol. 53, pp. 3084-3088, 2012.
[32] L.-j. Ma, H.-q. Wang, L.-f. He, and X.-y. Li, "Hyperbranched epoxy resins prepared by proton transfer polymerization from an A2 + B3 system," Chinese Journal of Polymer Science, vol. 29, pp. 300-307, 2011/05/01 2011
[33] U. Konwar, M. Mandal, and N. Karak, "Mesua ferrea L. seed oil based acrylate-modified thermostable and biodegradable highly branched polyester resin/clay nanocomposites," Progress in Organic Coatings, vol. 72, pp. 676-685, 2011.
[34] F. J. Stadler and V. Karimkhani, "Correlations between the Characteristic Rheological Quantities and Molecular Structure of Long-Chain Branched Metallocene Catalyzed Polyethylenes," Macromolecules, vol. 44, pp. 5401-5413, 2011/07/12 2011.
[35] M. Morell, M. Erber, X. Ramis, F. Ferrando, B. Voit, and A. Serra, "New epoxy thermosets modified with hyperbranched poly(ester-amide) of different molecular weight," European Polymer Journal, vol. 46, pp. 1498-1509, 2010.
[36] A. Lopez-Luna, J. L. Gallegos, M. Gimeno, E. Vivaldo-Lima, and E. Barzana, "Lipase-catalyzed syntheses of linear and hyperbranched polyesters using compressed fluids as solvent media," Journal of Molecular Catalysis B: Enzymatic, vol. 67, pp. 143-149, 2010.
[37] S. H. Tabatabaei, P. J. Carreau, and A. Ajji, "Rheological and thermal properties of blends of a long-chain branched polypropylene and different linear polypropylenes," Chemical Engineering Science, vol. 64, pp. 4719-4731, 2009
[38] M. Shon and H. Kwon, "Comparison of surface modification with amino terminated polydimethylsiloxane and amino branched polydimethylsiloxane on the corrosion protection of epoxy coating," Corrosion Science, vol. 51, pp. 650-657, 2009.
[39] C. Esposito Corcione and M. Frigione, "A novel procedure able to predict the rheological behavior of trifunctional epoxy resin/hyperbranched aliphatic polyester mixtures," Polymer Testing, vol. 28, pp. 830-835, 2009.
[40] J. M. Dodds, E. De Luca, L. R. Hutchings, and N. Clarke, "Rheological Properties of HyperMacs---Long Chain Branched Analogues of Hyperbranched Polymers," AIP Conference Proceedings, vol. 1027, pp. 351-353, 2008.
[41]D. Zhang and D. Jia, "Synthesis of novel low-viscosity liquid epoxidized aromatic hyperbranched polymers," European Polymer Journal, vol. 42, pp. 711-714, 2006.
[42]A. Goswami and A. K. Singh, "Hyperbranched polyester having nitrogen core: synthesis and applications as metal ion extractant," Reactive and Functional Polymers, vol. 61, pp. 255-263, 2004.
[43]S. Reichelt, K.-J. Eichhorn, D. Aulich, K. Hinrichs, N. Jain, D. Appelhans, and B. Voit, "Functionalization of solid surfaces with hyperbranched polyesters to control protein adsorption," Colloids and Surfaces B: Biointerfaces, vol. 69, pp. 169-177, 2009.
[44] Y. Lin, K.-Y. Zhang, Z.-M. Dong, L.-S. Dong, and Y.-S. Li, "Study of Hydrogen-Bonded Blend of Polylactide with Biodegradable Hyperbranched Poly(ester amide)," Macromolecules, vol. 40, pp. 6257-6267, 2007.
[45] Y. Zhao, J. Zou, and W. Shi, "Synthesis and characterization of PbS/modified hyperbranched polyester nanocomposite hollow spheres at room temperature," Materials Letters, vol. 59, pp. 686-689, 2005.
[46] T. Takigawa, H. Kadoya, T. Miki, T. Yamamoto, and T. Masuda, "Dependence of zero-shear viscosity and steady-state compliance on molecular weight between entanglements for ethylene–cycloolefin copolymers," Polymer, vol. 47, pp. 4811-4815, 2006.
[47] S.-Y. Kwak, J. Choi, and H. J. Song, "Viscoelastic Relaxation and Molecular Mobility of Hyperbranched Poly(ε-caprolactone)s in Their Melt State," Chemistry of Materials, vol. 17, pp. 1148-1156, 2005/03/01 2005.
[48] N. Hamidi and R. Massoudi, "Treatments of intrinsic viscosity and glass transition temperature data of poly(2,6-dimethylphenylmethacrylate)," Thermochimica Acta, vol. 398, pp. 27-32, 2003.
[49] C. Liu, J. Wang, and J. He, "Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE," Polymer, vol. 43, pp. 3811-3818, 2002.
[50] R. Mezzenga and J. A. E. Manson, "Thermo-mechanical properties of hyperbranched polymer modified epoxies," Journal of Materials Science, vol. 36, pp. 4883-4891, 2001/10/01 2001
[51] 张新荔, 何伟, and 孟运东, "脂肪族超支化聚酯在涂料中的应用研究进展," 塗料工業, vol. 39, pp. 50-54, 2009.
[52] 王黎, 童身毅, and 湖. 武汉工程大学, 武汉,430074, "超支化聚酯的合成及改性," 涂料工业, pp. 12-15, 2006
[53]张秀青 and 邱化玉, "增强助剂超支化聚酯木浆抄纸中的应用条件," 紙和造紙, vol. 28, pp. 35-39, 2009.
[54]冯宗财, 赵凌, 王跃川, and 杜春雷, "超支化聚酯微光学光致抗蚀剂," 應用化學, vol. 23, pp. 762-765, 2006.
[55]J. F. Steffe, Rheological Methods in Food Process Engineering. East Lansing:MI: Freeman Press, 1996.
[56]L. E. Nielsen, Polymer Rheology. New York: M. Dekker, 1977.
[57]R. C. A. a. O. H. R. B. Bird, Dynamics of polymeric liquids: Fluid mechanics. New York:Wiley-Interscience, 1987.
[58]C. W. Macosko, Rheology: Principles,Measurements and Applications. New York: Wiley-VCH, 1994.
[59]J. F. Z. Kembłowski, Applied Fluid Rheology. UK: Kluwer Academic Pub, 1991.
[60]Z. Kemblowski, Applied Fluid Rheology Springer. UK: Kluwer Academic Pub, 1991.
[61]C. D. Han, Multiphase Flow in Polymer Processing. New York: Academic Press, 1981.
[62]J.-H. Lee, C.-M. Um, and I.-b. Lee, "Rheological properties of resin composites according to variations in monomer and filler composition," Dental Materials, vol. 22, pp. 515-526, 2006.
[63]劉士榮, 高分子流變學. 台北, 1995.
[64]吳其曄 and 巫靜安, 高分子材料流變學: 高等教育出版社.
[65]M. T. Ghannam, S. W. Hasan, B. Abu-Jdayil, and N. Esmail, "Rheological properties of heavy & light crude oil mixtures for improving flowability," Journal of Petroleum Science and Engineering, vol. 81, pp. 122-128, 2012.
[66]S. Onogi, T. Fujii, H. Kato, and S. Ogihara, "Relation between Steady-Flow and Dynamic Viscosity for Polyethylene Melts1," The Journal of Physical Chemistry, vol. 68, pp. 1598-1601, 1964/06/01 1964.
[67]E. K. Harris, "Effect of blending on the rheological properties of polystyrene," Journal of Applied Polymer Science, vol. 17, pp. 1679-1692, 1973.
[68]K. Yasuda, R. C. Armstrong, and R. E. Cohen, "Shear flow properties of concentrated solutions of linear and star branched polystyrenes," Rheologica Acta, vol. 20, pp. 163-178, 1981/03/01 1981.
[69]J. P. E. Rouse, "A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers," The Journal of Chemical Physics, vol. 21, pp. 1272-1280, 1953.
[70]F. Bueche, "The Viscoelastic Properties of Plastics," The Journal of Chemical Physics, vol. 22, pp. 603-609, 1954.
[71]B. H. Zimm, "Dynamics of Polymer Molecules in Dilute Solution: Viscoelasticity, Flow Birefringence and Dielectric Loss," The Journal of Chemical Physics, vol. 24, pp. 269-278, 1956.
[72]C. D. Han, Y. J. Kim, H.-K. Chuang, and T. H. Kwack, "Rheological properties of branched low-density polyethylene," Journal of Applied Polymer Science, vol. 28, pp. 3435-3451, 1983.
[73]T. T. Hsieh, C. Tiu, and G. P. Simon, "Melt rheology of aliphatic hyperbranched polyesters with various molecular weights," Polymer, vol. 42, pp. 1931-1939, 2001.
[74] İ. B. Pehlivan, R. Marsal, G. A. Niklasson, C. G. Granqvist, and P. Georen, "PEI–LiTFSI electrolytes for electrochromic devices: Characterization by differential scanning calorimetry and viscosity measurements," Solar Energy Materials and Solar Cells, vol. 94, pp. 2399-2404, 2010.
[75]B. H. Zimm and R. W. Kilb, "Dynamics of branched polymer molecules in dilute solution," Journal of Polymer Science, vol. 37, pp. 19-42, 1959.
[76]K. Osaki, Y. Mitsuda, R. M. Johnson, J. L. Schrag, and J. D. Ferry, "Infinite-Dilution Viscoelastic Properties of Linear and Star-Shaped Polybutadienes," Macromolecules, vol. 5, pp. 17-19, 1972/01/01 1972.
[77]R. L. Sammler and J. L. Schrag, "Bead-spring model predictions of solution dynamics for flexible homopolymers incorporating long-chain branches and/or rings," Macromolecules, vol. 21, pp. 1132-1140, 1988/04/01 1988.
[78]R. L. Sammler and J. L. Schrag, "Predictions of the ability of solution dynamics experiments to characterize long-chain structure in flexible homopolymers," Macromolecules, vol. 21, pp. 3273-3285, 1988/11/01 1988.
[79]A. I. M. Denneman and R. J. J. Jongschaap, "A bead-spring model incorporating cyclic structures, non-equal springs and beads with non-equal friction coefficients," Journal of Rheology, vol. 40, pp. 589-612, 1996.
[80]L. H. Sperling, Introduction to Physical Polymer Science. USA:Wiley Online Library, 1992.
[81]C. A. Ittner Mazali and M. I. Felisberti, "Vinyl ester resin modified with silicone-based additives: III. Curing kinetics," European Polymer Journal, vol. 45, pp. 2222-2233, 2009.
[82]K. Yasuda, Investigation of the analogies between viscometric and linear viscoelastic properties of polystyrene, 1981.
[83]P. J. Carreau, Rheological equations from molecular network theories. Trans. Soc. Rheol, 1972.
[84]F. J. Stadler and H. Munstedt, "Numerical description of shear viscosity functions of long-chain branched metallocene-catalyzed polyethylenes," Journal of Non-Newtonian Fluid Mechanics, vol. 151, pp. 129-135, 2008.
[85] F. Alvarez, A. Alegra, and J. Colmenero, "Relationship between the time-domain Kohlrausch-Williams-Watts and frequency-domain Havriliak-Negami relaxation functions," Physical Review B, vol. 44, pp. 7306-7312, 1991.
[86]S.-Y. Kwak, J. Choi, and H. J. Song, "Viscoelastic Relaxation and Molecular Mobility of Hyperbranched Poly(ε-caprolactone)s in Their Melt State," Chemistry of Materials, vol. 17, pp. 1148-1156, 2005/03/01 2005.
[87] 石万聪, 石志博, and 蒋平平, 增塑剂及其应用: 化学工业出版社, 2002.
[88]H. Zhao-Rang, L. Feng-Qi, Y. Bai, C. Li-Li, and T. Xin-Yi, "Study on Laminar Viscosity and Zero Shear Viscosity of Latex Systems," Journal of Colloid and Interface Science, vol. 251, pp. 447-451, 2002.
[89]S. Kasapis, "The use of Arrhenius and WLF kinetics to rationalise the rubber-to-glass transition in high sugar/κ-carrageenan systems," Food Hydrocolloids, vol. 15, pp. 239-245, 2001.
[90]Z. Zeng, L. Sun, W. Xue, N. Yin, and W. Zhu, "Relationship of intrinsic viscosity to molecular weight for poly (1, 4-butylene adipate)," Polymer Testing, vol. 29, pp. 66-71, 2010.
[91]H.-q. Yan, H.-q. Wang, and J. Cheng, "Interpenetrating polymer networks from the novel bismaleimide and cyanate containing naphthalene: Cure and thermal characteristics," European Polymer Journal, vol. 45, pp. 2383-2390, 2009.
[92]M. L. Williams, R. F. Landel, and J. D. Ferry, "The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids," Journal of the American Chemical Society, vol. 77, pp. 3701-3707, 1955.
[93] F. Bao, W. Shi, Progress in Organic Coatings 68 (2010) 334–339.
[94] J. Liu, L. Lou, W. Yu, R. Liao, R. Li, and C. Zhou, "Long chain branching
polylactide: Structures and properties," Polymer, vol. 51, pp. 5186-5197, 2010.
[95] J. Tian, W. Yu, and C. Zhou, "The preparation and rheology characterization of long chain branching polypropylene," Polymer, vol. 47, pp. 7962-7969, 2006.
[96] N. Kaur, M. Singh, L. Singh, A. M. Awasthi, and J.Kumar,"Gamma-radiation-induced dielectric relaxation characteristics of layered crystals of phlogopite mica," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 316, pp. 232-238, 2013.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊