1.馬振基, 奈米科技材料原理與應用. 2012.
2.張 , 陽., 納米生物材料學,北京市,化學工業,2005。.
3.Bian, B.R., et al., Effect of H-2 on the Formation Mechanism and Magnetic Properties of FePt Nanocrystals. Ieee Transactions on Magnetics, 2013. 49(7): p. 3307-3309.
4.蘇品書, 超微粒子材料技術,復漢出版社。.
5.何建新, FePt奈米微粒之製備與自組裝特性研究 ,碩士論文,國立清華大學材料科學工程研究所,新竹,2004.6.物理雙月刊(廿八卷四期). 2006 年8 月.
7.蔡志申, 科技部高瞻自然科學教學資源平台,http://highscope.ch.ntu.edu.tw/wordpress/?p=22506.
8.Gu, H.W., et al., Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chemical Communications, 2006(9): p. 941-949.
9.Chou, S.W., et al., In Vitro and in Vivo Studies of FePt Nanoparticles for Dual Modal CT/MRI Molecular Imaging. Journal of the American Chemical Society, 2010. 132(38): p. 13270-13278.
10.Tartaj, P., et al., The preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D-Applied Physics, 2003. 36(13): p. R182-R197.
11.Pankhurst, Q.A., et al., Progress in applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics, 2009. 42(22).
12.Fan, J.Q., et al., Targeted anti-cancer prodrug based on carbon nanotube with photodynamic therapeutic effect and pH-triggered drug release. Journal of Nanoparticle Research, 2013. 15(9).
13.Liu, J., et al., Magnetic Nanocomposites with Mesoporous Structures: Synthesis and Applications. Small, 2011. 7(4): p. 425-443.
14.Fuchigami, T., et al., A magnetically guided anti-cancer drug delivery system using porous FePt capsules. Biomaterials, 2012. 33(5): p. 1682-1687.
15.Gazeau, F., M. Levy, and C. Wilhelm, Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine, 2008. 3(6): p. 831-844.
16.Tai, Y.L., et al., Recent research progress on the preparation and application of magnetic nanospheres. Polymer International, 2011. 60(7): p. 976-994.
17.Giri, J., et al., Investigation on T-c tuned nano particles of magnetic oxides for hyperthermia applications. Bio-Medical Materials and Engineering, 2003. 13(4): p. 387-399.
18.Shinkai, M., Functional magnetic particles for medical application. Journal of Bioscience and Bioengineering, 2002. 94(6): p. 606-613.
19.Fortin, J.P., F. Gazeau, and C. Wilhelm, Intracellular heating of living cells through Neel relaxation of magnetic nanoparticles. European Biophysics Journal with Biophysics Letters, 2008. 37(2): p. 223-228.
20.Berry, C.C., Progress in functionalization of magnetic nanoparticles for applications in biomedicine. Journal of Physics D-Applied Physics, 2009. 42(22).
21.Sun, S.H., et al., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000. 287(5460): p. 1989-1992.
22.Sun, S.H., et al., Compositionally controlled FePt nanoparticle materials. Ieee Transactions on Magnetics, 2001. 37(4): p. 1239-1243.
23.Elkins, K.E., et al., Ultrafine FePt nanoparticles prepared by the chemical reduction method. Nano Letters, 2003. 3(12): p. 1647-1649.
24.Pana, O., et al., Synthesis and characterization of Fe-Pt based multishell magnetic nanoparticles. Journal of Alloys and Compounds, 2013. 574: p. 477-485.
25.Tang, J.L., et al., Au@Pt nanostructures: a novel photothermal conversion agent for cancer therapy. Nanoscale, 2014. 6(7): p. 3670-3678.
26.Skomski, R., Nanomagnetics. Journal of Physics-Condensed Matter, 2003. 15(20): p. R841-R896.
27.鍾騏任, 鐵鉑-二氧化鈦奈米複合材料合成及特性分析,碩士論文,國立臺北科技大學機電整合研究所,台北,2012.28.Yu, C.H., et al., Synthesis and fabrication of a thin film containing silica-encapsulated face-centered tetragonal FePt nanoparticles. Advanced Materials, 2006. 18(17): p. 2312-+.
29.Massalski, T.B., Binary alloy phase diagrams. 1990.
30.Gu, H.W., et al., Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. Journal of the American Chemical Society, 2003. 125(51): p. 15702-15703.
31.Xu, C.J., et al., Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. Journal of the American Chemical Society, 2004. 126(11): p. 3392-3393.
32.Liu, Y.M., et al., PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: Potential theranostic applications and in vivo toxicity studies. Nanomedicine-Nanotechnology Biology and Medicine, 2013. 9(7): p. 1077-1088.
33.Chen, C.L., et al., Photothermal cancer therapy via femtosecond-laser-excited FePt nanoparticles. Biomaterials, 2013. 34(4): p. 1128-1134.
34.Subr, V., et al., Poly[N-(2-hydroxypropyl)methacrylamide] conjugates of methotrexate - Synthesis and in vitro drug release. Journal of Controlled Release, 1997. 49(2-3): p. 123-132.
35.Rasouli, S., et al., Positively charged functionalized silica nanoparticles as nontoxic carriers for triggered anticancer drug release. Designed Monomers and Polymers, 2014. 17(3): p. 227-237.
36.陳洋元、陳正龍, 奈米科學在能源與生醫的應用,物理雙月刊.37.Chen, C.L., et al., In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons. Biomaterials, 2010. 31(14): p. 4104-4112.
38.Xiao, H.R., et al., Photodynamic effects of chlorin e6 attached to single wall carbon nanotubes through noncovalent interactions. Carbon, 2012. 50(4): p. 1681-1689.
39.Chan, A.L., et al., Pharmacokinetics and clinical effects of mono-L-aspartyl chlorin e6 (NPe6) photodynamic therapy in adult patients with primary or secondary cancer of the skin and mucosal surfaces. Photodermatology Photoimmunology & Photomedicine, 2005. 21(2): p. 72-78.
40.Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983. 65(1-2): p. 55-63.
41.Sun, H.M., et al., Influences of surface coatings and components of FePt nanoparticles on the suppression of glioma cell proliferation. International Journal of Nanomedicine, 2012. 7: p. 3295-3307.
42.Shukla, N., et al., FTIR study of surfactant bonding to FePt nanoparticles. Journal of Magnetism and Magnetic Materials, 2003. 266(1-2): p. 178-184.
43.Bagaria, H.G., et al., Understanding mercapto ligand exchange on the surface of FePt nanoparticles. Langmuir, 2006. 22(18): p. 7732-7737.
44.Wei, D.H. and Y.D. Yao, Synthetic characterization and surface modification of FePt nanoparticles. Journal of Applied Physics, 2011. 109(7).
45.Maenosono, S., R. Yoshida, and S. Saita, Evaluation of genotoxicity of amine-terminated water-dispersible FePt nanoparticles in the Ames test and in vitro chromosomal aberration test. Journal of Toxicological Sciences, 2009. 34(3): p. 349-354.
46.Wang, X.Y., R.D. Tilley, and J.J. Watkins, Simple Ligand Exchange Reactions Enabling Excellent Dispersibility and Stability of Magnetic Nanoparticles in Polar Organic, Aromatic, and Protic Solvents. Langmuir, 2014. 30(6): p. 1514-1521.
47.de la Presa, P., et al., Ligand Exchange in Gold-Coated FePt Nanoparticles. Ieee Transactions on Magnetics, 2008. 44(11): p. 2816-2819.
48.Zhu, Z.J., et al., Determination of the Intracellular Stability of Gold Nanoparticle Monolayers Using Mass Spectrometry. Analytical Chemistry, 2012. 84(10): p. 4321-4326.
49.Tanaka, Y. and S. Maenosono, Amine-terminated water-dispersible FePt nanoparticles. Journal of Magnetism and Magnetic Materials, 2008. 320(19): p. L121-L124.
50.Wei, S.L., et al., Molecularly Imprinted Electrochemical Sensor for the Determination of Ampicillin Based on a Gold Nanoparticle and Multiwalled Carbon Nanotube-Coated Pt Electrode. Journal of Applied Polymer Science, 2014. 131(16).
51.Kohler, N., et al., Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir, 2005. 21(19): p. 8858-8864.
52.蔣伯頡, 利用化學還原法製備生醫應用的FePt 奈米粒子,碩士論文,私立東海大學化學工程研究所,台中,2006.