跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/05/31 23:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊斯帆
研究生(外文):Szu-Fan Yang
論文名稱:製備功能性鐵鉑奈米微粒應用於癌症治療
論文名稱(外文):Preparation of Functionalized FePt Magnetic Nanoparticles for Cancer Treatment
指導教授:鍾仁傑鍾仁傑引用關係
指導教授(外文):Ren-Jei Chung
口試委員:曾靖孋魏大華劉澤英
口試委員(外文):Ching-Li TsengDa-Hua WeiTse-Ying Liu
口試日期:2014-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:70
中文關鍵詞:鐵鉑磁性奈米顆粒葉酸拮抗劑磁滯放熱藥物制放
外文關鍵詞:Iron-platinum magnetic nanoparticlesMethotrexateMagnetic hyperthermiaControlled drug release
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
鐵鉑磁性奈米顆粒除了應用於磁性儲存媒體上以外,近年來更應用於生醫領域。鉑本身性質和金很接近,具有良好的生物相容性、無生物毒性、化學穩定性;而鐵為磁性優良的金屬,所以鐵鉑奈米合金是結合兩者優點。本研究是利用化學合成法去製備鐵鉑磁性奈米顆粒,並採用低毒性方式表面修飾2-氨基乙烷硫醇(SH),再利用簡單製程將葉酸拮抗劑 (Methotrexate,MTX) 接上,製備出具有磁性導引、癌症細胞標定以及磁致放熱之多功能奈米磁性顆粒。以化學合成法合出來的FePt為疏水性奈米粒子,由成份分析出來得知鐵與鉑比為58:42,在20000G的磁場下飽和磁化量為12.58 emu/g,在室溫下為超順磁。由細胞毒性測試可以得知濃度為400 μg/mL對老鼠纖維母細胞(L929)沒有明顯毒性。以2-氨基乙烷硫醇修飾FePt後,利用FT-IR得知於3400 cm-1有明顯OH官能基,表示成功修飾成親水性。之後將MTX接上奈米粒子上,由UV/VIS以及FT-IR證明成功接枝上MTX。將FePt-MTX做細胞毒性測試,發現濃度為0.075 mg/ml以下為安全使用劑量,最後將FePt於交流磁場下做藥物制放,MTX釋放量隨時間增長而增加,代表可以透過高週波之控制達到藥物制放的目的。

In addition to application in storage media, iron-platinum magnetic nanoparticles are also used in biomedical field in recent years. The nature of platinum resembles greatly from that of gold, including great biocompatibility, no toxicity and chemical stability. Iron metal has excellent magnetic ability. Hence, iron-platinum magnetic nanoparticles combine advantages of both elements. The aim of this study was to develop iron-platinum magnetic nanoparticles using chemical synthesis method and low-toxic way through modifying the surface by 2-aminoethane thiol (SH). And then a simple process was used to graft methotrexate (MTX) to achieve the preparation of multi-functional magnetic nanoparticle including magnetic guidance, cancer cell targeting and magnetic hyperthermia. The hydrophobic FePt alloy nanoparticle was prepared by chemical synthesis, and the proportion of iron and platinum was measured to be 58:42. It’s superparamagnetic at room temperature and the saturated magnetization was 12.58 emu/g under 20000 G magnetic fields. The toxicity of FePt was low for mouse fibroblasts cell line (L929) below concentration of 400 μg/mL. After surface modification by 2–aminoethane, we used FT-IR to prove the existence of OH functional groups in 3400 cm-1, which standing for the successful modification to become hydrophilic. Methotrexate (MTX) was further grafted on to the nanoparticle. The successful grafting of MTX was proved the by FT-IR and UV/VIS. Through cytotoxicity testing, we discovered that the safe dosage of FePt-MTX was below 0.075 mg/ml. Finally, drug release from FePt-MTX was investigated under AC magnetic field, and the results showed that the release of MTX increased with time. The goal of controlled drug release using high-frequency wave generator was achieved.

摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 1
第二章 文獻回顧與理論背景 3
2-1 研究背景 3
2-2 奈米科技簡介 3
2-2.1 奈米材料之定義 3
2-2.2 奈米技術與材料的分類 4
2-2.3 奈米材料之特性 5
2-3 磁性奈米材料文獻回顧及理論背景 7
2-3.1 磁性奈米材料之特性 7
2-3.2 磁矩 8
2-3.3 磁性材料之分類 8
2-3.4 磁滯曲線 10
2-4 奈米磁性材料在生醫上的應用 11
2-4.1 藥物制放 11
2-4.2 高溫治療 12
2-5 奈米材料之製備 12
2-5.1 FePt製備方式 12
2-6 其他奈米微粒製備 13
2-7 FePt磁性奈米微粒之介紹 14
2-8 FePt奈米微粒在生醫上的應用 15
2-8.1 具有生物功能性之FePt奈米微粒 15
2-8.2 生物功能性之FePt奈米微粒應用於顯影技術 18
2-8.3 FePt奈米微粒應用於光熱治療癌症 19
2-9類葉酸結構抗癌藥物 20
2-10光熱療法 21
2-11光動力療法 22
第三章 實驗設計與分析技術 23
3-1 實驗架構 23
3-1.1 FePt材料分析架構圖 23
3-1.2 實驗流程架構圖 24
3-2 實驗儀器 25
3-3 FePt製備材料 26
3-3.1 藥品 26
3-3.2實驗裝置圖 27
3-4實驗步驟 28
3-4.1 疏水性FePt的製備 28
3-5 FePt的表面改質 29
3-5.1 藥品 29
3-5.2 FePt表面修飾2-氨基乙烷硫醇 29
3-5.3 FePt表面修飾2-氨基乙烷硫醇再接上MTX 29
3-6 設備簡介 30
3-6.1 X光繞射分析儀 30
3-6.2 掃描電子顯微鏡 31
3-6.3 穿透式電子顯微鏡 32
3-6.4 超導量子干涉磁量儀 33
3-6.5 傅立葉轉換紅外線光譜儀 34
3-6.6 高週波加熱儀 35
3-6.7 可見光紫外光分光光譜儀 36
3-7 In vitro 37
3.7.1 細胞毒性測試 37
第四章 結果與討論 38
4-1 FePt奈米微粒特性與研究 38
4-1.1 FePt成份分析 38
4-1.2 XRD光繞射分析 40
4-1.3 FT-IR 分析表面特徵 42
4-1.4掃描電子顯微鏡(SEM) 44
4-1.5穿透式電子顯微鏡分析(TEM) 45
4-1.6 光學性質分析 48
4-2 FePt奈米微粒磁性研究 49
4-2.1磁化率 49
4-2.2 FePt奈米微粒在交流磁場下加熱測試 50
4-3 FePt奈米微粒之表面修飾 52
4-3.1 FePt奈米微粒之表面修飾疏水性改成親水性 54
4-3.2 FePt奈米微粒表面修飾親水後再接上MTX 56
4-4 MTX檢量線製作 60
4-5 FePt-MTX接枝藥量計算 62
4-6 生物相容性測試 63
4-6.1 FePt 生物相容性測試 63
4-6.2 FePt-MTX 生物相容性測試 64
4-7 FePt-MTX藥物制放 65
第五章 結論 67
參考資料 68



1.馬振基, 奈米科技材料原理與應用. 2012.
2.張 , 陽., 納米生物材料學,北京市,化學工業,2005。.
3.Bian, B.R., et al., Effect of H-2 on the Formation Mechanism and Magnetic Properties of FePt Nanocrystals. Ieee Transactions on Magnetics, 2013. 49(7): p. 3307-3309.
4.蘇品書, 超微粒子材料技術,復漢出版社。.
5.何建新, FePt奈米微粒之製備與自組裝特性研究 ,碩士論文,國立清華大學材料科學工程研究所,新竹,2004.
6.物理雙月刊(廿八卷四期). 2006 年8 月.
7.蔡志申, 科技部高瞻自然科學教學資源平台,http://highscope.ch.ntu.edu.tw/wordpress/?p=22506.
8.Gu, H.W., et al., Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chemical Communications, 2006(9): p. 941-949.
9.Chou, S.W., et al., In Vitro and in Vivo Studies of FePt Nanoparticles for Dual Modal CT/MRI Molecular Imaging. Journal of the American Chemical Society, 2010. 132(38): p. 13270-13278.
10.Tartaj, P., et al., The preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D-Applied Physics, 2003. 36(13): p. R182-R197.
11.Pankhurst, Q.A., et al., Progress in applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics, 2009. 42(22).
12.Fan, J.Q., et al., Targeted anti-cancer prodrug based on carbon nanotube with photodynamic therapeutic effect and pH-triggered drug release. Journal of Nanoparticle Research, 2013. 15(9).
13.Liu, J., et al., Magnetic Nanocomposites with Mesoporous Structures: Synthesis and Applications. Small, 2011. 7(4): p. 425-443.
14.Fuchigami, T., et al., A magnetically guided anti-cancer drug delivery system using porous FePt capsules. Biomaterials, 2012. 33(5): p. 1682-1687.
15.Gazeau, F., M. Levy, and C. Wilhelm, Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine, 2008. 3(6): p. 831-844.
16.Tai, Y.L., et al., Recent research progress on the preparation and application of magnetic nanospheres. Polymer International, 2011. 60(7): p. 976-994.
17.Giri, J., et al., Investigation on T-c tuned nano particles of magnetic oxides for hyperthermia applications. Bio-Medical Materials and Engineering, 2003. 13(4): p. 387-399.
18.Shinkai, M., Functional magnetic particles for medical application. Journal of Bioscience and Bioengineering, 2002. 94(6): p. 606-613.
19.Fortin, J.P., F. Gazeau, and C. Wilhelm, Intracellular heating of living cells through Neel relaxation of magnetic nanoparticles. European Biophysics Journal with Biophysics Letters, 2008. 37(2): p. 223-228.
20.Berry, C.C., Progress in functionalization of magnetic nanoparticles for applications in biomedicine. Journal of Physics D-Applied Physics, 2009. 42(22).
21.Sun, S.H., et al., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000. 287(5460): p. 1989-1992.
22.Sun, S.H., et al., Compositionally controlled FePt nanoparticle materials. Ieee Transactions on Magnetics, 2001. 37(4): p. 1239-1243.
23.Elkins, K.E., et al., Ultrafine FePt nanoparticles prepared by the chemical reduction method. Nano Letters, 2003. 3(12): p. 1647-1649.
24.Pana, O., et al., Synthesis and characterization of Fe-Pt based multishell magnetic nanoparticles. Journal of Alloys and Compounds, 2013. 574: p. 477-485.
25.Tang, J.L., et al., Au@Pt nanostructures: a novel photothermal conversion agent for cancer therapy. Nanoscale, 2014. 6(7): p. 3670-3678.
26.Skomski, R., Nanomagnetics. Journal of Physics-Condensed Matter, 2003. 15(20): p. R841-R896.
27.鍾騏任, 鐵鉑-二氧化鈦奈米複合材料合成及特性分析,碩士論文,國立臺北科技大學機電整合研究所,台北,2012.
28.Yu, C.H., et al., Synthesis and fabrication of a thin film containing silica-encapsulated face-centered tetragonal FePt nanoparticles. Advanced Materials, 2006. 18(17): p. 2312-+.
29.Massalski, T.B., Binary alloy phase diagrams. 1990.
30.Gu, H.W., et al., Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. Journal of the American Chemical Society, 2003. 125(51): p. 15702-15703.
31.Xu, C.J., et al., Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. Journal of the American Chemical Society, 2004. 126(11): p. 3392-3393.
32.Liu, Y.M., et al., PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: Potential theranostic applications and in vivo toxicity studies. Nanomedicine-Nanotechnology Biology and Medicine, 2013. 9(7): p. 1077-1088.
33.Chen, C.L., et al., Photothermal cancer therapy via femtosecond-laser-excited FePt nanoparticles. Biomaterials, 2013. 34(4): p. 1128-1134.
34.Subr, V., et al., Poly[N-(2-hydroxypropyl)methacrylamide] conjugates of methotrexate - Synthesis and in vitro drug release. Journal of Controlled Release, 1997. 49(2-3): p. 123-132.
35.Rasouli, S., et al., Positively charged functionalized silica nanoparticles as nontoxic carriers for triggered anticancer drug release. Designed Monomers and Polymers, 2014. 17(3): p. 227-237.
36.陳洋元、陳正龍, 奈米科學在能源與生醫的應用,物理雙月刊.
37.Chen, C.L., et al., In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons. Biomaterials, 2010. 31(14): p. 4104-4112.
38.Xiao, H.R., et al., Photodynamic effects of chlorin e6 attached to single wall carbon nanotubes through noncovalent interactions. Carbon, 2012. 50(4): p. 1681-1689.
39.Chan, A.L., et al., Pharmacokinetics and clinical effects of mono-L-aspartyl chlorin e6 (NPe6) photodynamic therapy in adult patients with primary or secondary cancer of the skin and mucosal surfaces. Photodermatology Photoimmunology & Photomedicine, 2005. 21(2): p. 72-78.
40.Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983. 65(1-2): p. 55-63.
41.Sun, H.M., et al., Influences of surface coatings and components of FePt nanoparticles on the suppression of glioma cell proliferation. International Journal of Nanomedicine, 2012. 7: p. 3295-3307.
42.Shukla, N., et al., FTIR study of surfactant bonding to FePt nanoparticles. Journal of Magnetism and Magnetic Materials, 2003. 266(1-2): p. 178-184.
43.Bagaria, H.G., et al., Understanding mercapto ligand exchange on the surface of FePt nanoparticles. Langmuir, 2006. 22(18): p. 7732-7737.
44.Wei, D.H. and Y.D. Yao, Synthetic characterization and surface modification of FePt nanoparticles. Journal of Applied Physics, 2011. 109(7).
45.Maenosono, S., R. Yoshida, and S. Saita, Evaluation of genotoxicity of amine-terminated water-dispersible FePt nanoparticles in the Ames test and in vitro chromosomal aberration test. Journal of Toxicological Sciences, 2009. 34(3): p. 349-354.
46.Wang, X.Y., R.D. Tilley, and J.J. Watkins, Simple Ligand Exchange Reactions Enabling Excellent Dispersibility and Stability of Magnetic Nanoparticles in Polar Organic, Aromatic, and Protic Solvents. Langmuir, 2014. 30(6): p. 1514-1521.
47.de la Presa, P., et al., Ligand Exchange in Gold-Coated FePt Nanoparticles. Ieee Transactions on Magnetics, 2008. 44(11): p. 2816-2819.
48.Zhu, Z.J., et al., Determination of the Intracellular Stability of Gold Nanoparticle Monolayers Using Mass Spectrometry. Analytical Chemistry, 2012. 84(10): p. 4321-4326.
49.Tanaka, Y. and S. Maenosono, Amine-terminated water-dispersible FePt nanoparticles. Journal of Magnetism and Magnetic Materials, 2008. 320(19): p. L121-L124.
50.Wei, S.L., et al., Molecularly Imprinted Electrochemical Sensor for the Determination of Ampicillin Based on a Gold Nanoparticle and Multiwalled Carbon Nanotube-Coated Pt Electrode. Journal of Applied Polymer Science, 2014. 131(16).
51.Kohler, N., et al., Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir, 2005. 21(19): p. 8858-8864.
52.蔣伯頡, 利用化學還原法製備生醫應用的FePt 奈米粒子,碩士論文,私立東海大學化學工程研究所,台中,2006.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top