跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃旻駿
研究生(外文):Min-Chun Huang
論文名稱:利用不同厚度之SiO2和TiO2空間層及ITO透明電極製作MOS結構矽太陽能電池之研究
論文名稱(外文):Performance Characterization of Silicon MOS-structure Solar Cell Based on Using ITO Transparent Electrode on the Thin TiO2 and SiO2 Space Layer
指導教授:何文章何文章引用關係
指導教授(外文):Wen-Jeng Ho
口試委員:蕭宏彬郭浩中林清富
口試委員(外文):Hung-Pin XiaoHao-chung KuoChing-Fuh Lin
口試日期:2014-07-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:93
中文關鍵詞:單晶矽太陽能電池ITO電極背面電場金屬氧化物半導體
外文關鍵詞:Single crystal silicon solar cellsITO electrodeanti-reflection coatingMetal Oxide Semiconductor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:459
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是利用金屬/氧化物/半導體(MOS)結構的概念導入到單晶矽太陽能電池製作,以提升光電流及轉換效率之研究。利用SiO2和TiO2兩種不同的介電層去探討其對於MOS太陽能電池光學和電學的影響,再利用濺鍍並將基板加熱的方式將氧化銦錫(ITO)濺鍍在介電層上作為透明金屬電極,本研究之ITO金屬/氧化物結構就相當於一層抗反射層,並在可見光波段有很低的反射率及高穿透率。當ITO透明電極加偏壓後會使底層pn半導體之空乏區增大,如此可增加其有效光吸收體積,太陽能電池的短路電流及轉換效率也隨之提高。
本論文首先利用旋轉塗佈(Spin-on film, SOF)方法,將磷(P)擴散源塗佈在p-Si的正面,在高溫爐進行擴散製程後,製作出正面n+-Si Emitter層。其次,利用電子束蒸鍍系統將Al蒸鍍於p-Si表面形成背面電極,再經由熱退火處理形成良好歐姆接觸。再將Ti/Al蒸鍍在n+-Si表面形成正面電極,完成單晶矽太陽能裸電池結構製作。接下來利用電子槍蒸鍍 SiO2或TiO2兩種材料當作空間層,並分別探討不同厚度下空間層對太陽能電池特性的影響。再以射頻磁控濺鍍系統,先將基板加熱至250℃,在氬氣環境下濺鍍ITO透明導電薄膜於裸電池表面。本文所獲得之ITO透明電極平均穿透率約80%以上(350~1100 nm)及導電率約為158.73(Ω.Cm)-1。
在MOS結構中空間層材料以及厚度的選擇上,不管是在反射率、漏電流或是加偏壓後效率的提升,均是TiO2 (20 nm)的表現最佳。在AM1.5G、25℃照光條件下,量測所完成之最佳單晶矽太陽電池於不同製程階段之特性參數如下:(1)裸電池(電池遮蔽率為10.14%,電池面積為0.16 cm2):開路電壓(Open circuit voltage, Voc)為0.55V,短路電流密度(Short circuit current density, Jsc)為25.40 mA/cm2,轉換效率(Conversion efficiency, η)為10.68%;(2)經蒸鍍完TiO2 (20 nm)與熱濺鍍ITO透明電極(MOS結構)後:Voc為0.56V,Jsc為33.31 mA/cm2,η為14.06%;(3)ITO閘電極加順向偏壓 +4V時,太陽能電池的Voc提升至0.57V,Jsc提升至47.19 mA/cm2,η提升至19.68%。最後以多頻LCR測試儀對電池進行電容-電壓(C-V)量測分析,以驗證p-n接面空乏區隨ITO電極偏壓變化,光載子之產生與收集也隨偏壓增加而變大,其電容在0 V時為4.79 nF,ITO偏壓為4 V時,電容下降到2.25 nF,由C-V量測結果得知p-n接面之感應空乏區隨ITO偏壓增加而增加。


In this study, a Metal/Oxide/Semiconductor (MOS) structure solar cell was fabricated and demonstrated. Significantly increased in photocurrent and conversion efficiency were obtained when the cell with a biasing voltage. The optical and electrical properties for MOS solar cell using SiO2 and TiO2 as a dielectric space layer are investigated. The transparent indium tin oxide (ITO) electrode was deposited upon the dielectric layer by a thermally sputtering. The Metal/Oxide structure also presented a good anti-reflection (AR) properties and has broadband low reflectance on visible wavelength. The depletion width of p-n junction under the ITO transparent electrode would be extended more deeply and obtained more large volume of absorber when biased voltage increased. Thus, the short-circuit current and conversion efficiency of MOS solar cell are further enhanced.
The first, the liquid type phosphorus (P) source was spun upon the front-side of p--Si wafer, and then anneal by RTA at 900°C. Then the n+-Si emitter layer on the front side was formed. Secondly, Al film was evaporated by electron-beam system on p-Si and annealed in the RTA chamber to obtain good ohmic-contact electrode. Next Ti/Al film was evaporated by electron-beam system on n+-Si. After isolation etching, the single crystal silicon bare-type solar cell was created. Then, the SiO2 and TiO2 layer was deposited upon the surface of bare solar cell by electron-beam evaporation, and the indium tin oxide (ITO) was deposited upon dielectric layer by a thermally sputtering at temperature above 250℃ in H2. Thus, the MOS-structure solar cell was formed. Transmittance of 80% (wavelength range 350~1100 nm) and conductivity of 158.73(Ω.cm)-1 were obtained from the obtained ITO film in this study.
In the selection of the material and the thickness of the space layer, the cell with a 20 nm TiO2 space layer has the best performance in the measurement of reflectance, leakage current and the increasement of effiency using the bias voltage. Under AM1.5G illumination and at temperatures of 25°C, the characteristics of the fabricated cell are characterized in different stages. (1) Bare solar cell (shadowing of 10.14%, area of 0.16cm2) : The open-circuit voltage (Voc) of 0.55V, short-circuit current density (Jsc) of 25.40 mA/cm2 and conversion efficiency (η) of 10.68% are presented. (2) Solar cell with TiO2 (20 nm) and ITO layer (50 nm):Voc of 0.56V, Jsc of 33.31 mA/cm2 and η of 14.06% are obtained. (3) Solar cell with TiO2 (20 nm) / ITO layer (50 nm) and ITO electrode biased at + 4V:Voc is increased from 0.56V to 0.57V, Jsc is increased to 47.19mA/cm2, and η is increased to 19.68%. The capacitance-voltage (C-V) of MOS-structure silicon solar cell was measured to confirm the depletion width as a function of the biasing voltage.


摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池發展歷程 3
1.3 文獻回顧 4
1.3.1 介電層TiO2特性 4
1.3.2 介電層SiO2特性 5
1.3.3 透明導電薄膜ITO特性 6
1.3.4 金屬氧化物半導體(MOS)結構太陽能電池 8
1.4 研究動機 8
第二章 理論基礎 10
2.1 太陽能光譜 10
2.2 光伏特效應 11
2.3 太陽能電池工作原理 12
2.3.1 p-n接面 12
2.3.2 太陽能電池等效電路圖 12
2.3.3 太陽能電池的特性參數 14
2.4 量子效率 16
2.5 正面電極功率消耗 18
2.6 MOS偏壓式太陽能電池結構模型 20
2.7 MOS電容理論 22
第三章 研究方法與實驗架構 27
3.1 儀器介紹 27
3.1.1 製程設備 27
3.1.2 量測設備 31
3.2 單晶矽太陽能電池製作流程 34
3.2.1 矽晶片清洗 35
3.2.2 磷擴散製程 36
3.2.3 正面濕式蝕刻隔離 37
3.2.4 背面電極製作 39
3.2.5 正面指狀電極製作 40
3.3 MOS結構製作流程 42
3.3.1 氧化層的製作 42
3.3.2 透明導電膜的製作 43
第四章 實驗結果與分析 45
4.1 單矽晶太陽能電池分析 45
4.1.1 磷擴散源旋轉塗佈正面片電阻量測 45
4.1.2表面濃度與擴散深度分析 45
4.1.3 太陽能電池電極設計 46
4.1.4 無照光下電流電壓特性 49
4.1.5 裸單晶矽太陽能電池特性分析 50
4.2 MOS偏壓式太陽能電池分析 53
4.2.1 MOS結構中SiO2不同厚度之光電特性比較 53
4.2.2 MOS結構中TiO2不同厚度之光電特性比較 64
4.2.3 MOS結構應用在不同面積的太陽能電池 79
第五章 結論 87
參考文獻 89


[1]郭浩中,賴芳儀,郭守義,蔡閔安,太陽能光電技術,五南圖書出版股份有限公司,2012。
[2]U.S. EIA, “Internation Energy Outlook,” 2013.
[3]莊嘉琛,太陽能工程-太陽電池篇,全華圖書股份有限公司,2008。
[4]H. K. Pulker, G. Paesold, and E. Ritter, “Refractive indices of TiO2 films produced by reactive evaporation of various titanium-oxygen phases,” Appl. Opt., vol. 15, 1976, pp. 2986-2991.
[5]A. Armigliato, G. Celotti, S. Guerri, P. Ostoja and R. Rosa, “Characterization Of TiOx Films And Their Application As Antireflection Coatings For Silicon Solar Cells,” Sol. Cells, vol. 3, 1981, pp. 195-208.
[6]S. Schiller, G. Beister, W. Sieber, “Influence Of Deposition Parameters On The Optical And Structurl Properties Of TiO2 Films Produced By Reactive D.C. Plasmatron Sputtering,” Thin Solid Films, vol. 83, 1981, pp. 239-245.
[7]W. D. Munz, J. Heimbach and S. R. Reineck, “Reactive High Rate Sputtering Of Oxides,” Thin Solid Films, vol. 86, 1981, pp. 175-181.
[8]K. S. Yeung, Y. W. Lam, “A Simple Chemical Vapour Deposition Method For Depositing Thin TiO2 Films” Thin Solid Films, vol. 109, 1983, pp. 169-178.
[9]L. M. Williams and D. W. Hess, “Structural properties of titanium dioxide films deposited in an rf glow discharge,” J. Vac. Sci. Technol. A, vol. 1, 1983, pp. 1810-1819.
[10]H. J. Hovel, “TiO2 Antireflection Coatings by a Low Temperature Spray Process,” Soc., vol. 125, 1978, pp. 983-985.
[11]C. J. Brinker, M. S. Harrington, “Sol-Gel Derived Antireflective Coatings For Silicon,” Sol. Energy Mater., vol. 5, 1979, pp. 159-172.
[12]Ozlem Duyar, Frank Placido, H. Zafer Durusoy, “Optimization of TiO2 films prepared by reactive electron beam evaporation of Ti3O5,” J. Phys. D: Appl. Phys., vol. 41, 2008, 095307(7PP).
[13]Hans W. Lehmann and K. Frick, “Optimizing deposition parameters of electron beam evaporated TiO2 films,” Appl. Opt., vol. 27, 1988, pp. 1281-1284.
[14]Hubert Selhofer, Elmar Ritter, and Robert Linsbod, “Properties of titanium dioxide films prepared by reactive electron-beam evaporation from various starting materials,” Appl. Opt., vol. 41, 2002, pp. 756-762.
[15]Song Ping, Lian Jie, Gao Shang, Li Ping, Wang Xiao, Wu Shiliang, Ma Zheng, “PECVD Grown SiO2 Film Process Optimization,” 2011 Symposium on Photonics and Optoelectronics (SOPO).
[16]K. Fujino, Y. Nishimoto, N. Tokumasu, and K. Maeda, “Low Temperature, Atmospheric Pressure CVD Using Hexamethyldisiloxane and Ozone,” J. Electrochem. Soc., vol. 139, 1992, pp. 2282-2287.
[17]Zheng Yuan, Simin Mokhtari, Allen Ferdinand, John Eakin, Larry Bartholomew, “Optimization of SiC2 film conformality in TEOS/O3 APCVD,” Thin Solid Films, 290-291, 1996, pp. 422-426.
[18]M.I. Alayo, I. Pereyra, M.N.P. Carreno, “Thick SiOxNy and SiO2 films obtained by PECVD technique at low temperatures,” Thin Solid Films, vol. 332, 1998, pp.40-45.
[19]O. Marcovitch, Z. Klein, and I. Lubezky, “Transparent conductive indium oxide film deposited on low temperature substrates by activated reactive evaporation,” Appl. Opt., vol. 28, 1989, pp. 2792-2795.
[20]ZHOU Yang, WU Guang-ming, GAO De-wen, XING Guang-jian, ZHU Yan-ying, ZHANG Zhi-qian, CAO Yang, “Preparation and Physical Properties of ITO Thin Films by Spray Pyrolysis Method ,” Adv. Mat. Res., vol. 465, 2012, pp. 268-275.
[21]P. K. Biswas, A. De, L. K. Dua, L. Chkoda, “Surface characterization of sol–gel derived indium tin oxide films on glass,” Bull. Mater. Sci., vol. 29, 2006, pp. 323-330.
[22]Kunisuke Maki, Nobuo Komiya, Asako Suzuki, “Fabrication of thin films of ITO by aerosol CVD,” Thin Solid Films, vol. 445, 2003, pp. 224–228.
[23]M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, J. Stollenwerk, “Dependence of oxygen flow on optical and electrical properties of DC-magnetron,” Thin solid Films, vol. 326, 1998, pp. 72-77.
[24]Walter W. Molzen, “Characterization of transparent conductive thin films of indium oxide,” J. Vac. Sci. Technol., vol. 12, 1975, pp. 99-102.
[25]M. Bender, J. Trube, J. Stollenwerk, “Deposition of transparent and conducting indium tin oxide films by the r.f.-superimposed DC sputtering technology”, Thin solid films vol. 354, 1999, pp. 100-105.
[26]T. Karasawa, Y. Miyata, “Electrical and optical properties of indium tin oxide thin films deposited on unheated substrates by d.c. reactive sputtering,” Thin Solid Films, vol. 223, 1993, pp. 135-139.
[27]L. Bardos, M. Libra, “Effect of the oxygen absorption on properties of ITO layers,” Vacuum, vol. 39, 1989, pp. 33-36.
[28]S. Muranaka, “Reactive deposition of In2O3 films on nucleated-crystallite substrates,” Thin Solid Films, vol. 221, 1992, pp. 1-4.
[29]M. Libra, L. Bardos, “Effect of post-deposition vacuum annealing on
properties of ITO layers,” Vacuum, vol. 38, 1988, pp. 455-457.
[30]G. P. Srivastava and P. K. Bhatnaga, “Theory of metal-oxide-semiconductor solar cells,” Solid-State Electron., vol. 22, 1979, pp. 581-587.
[31]M. Y. Doghish and F. D. Ho, “A comprehensive analytical model for metal-insulator-semiconductor (MIS) devices: A solar cell application,” IEEE Trans. Electron Devices., vol. 40, 1993, pp. 1446-1454.
[32]D. L. Pulfrey, “MIS Solar Cells : A Review,” IEEE Trans. Electron Devices., vol. 25, 1978, pp. 1302-1317.
[33]K. C. Lee and J. G. Hwu, “ 17.3% efficiency Metal-Oxide Semiconductor (MOS) sloar cells with liquid-phase-deposited silicon dioxide,” IEEE Electron Device Lett., vol. 18, 1997, pp. 565-567.
[34]G. P. Srivastava and P. K. Bhatnaga, “Theory Of Metal-Oxide-Semiconductor Solar Cells,” Solid-State Electron., vol. 22, 1979, pp. 581-587.
[35]M. Y. Doghish and F. D. Ho, “A Comprehensive Analytical Model for Metal-Insulator-Semiconductor (MIS) Devices: A Solar Cell Application,” IEEE Trans. Electron Devices., vol. 40, 1993, pp. 1446 -1454.
[36]H. Nagayama, H. Honda, and H. Kawahara, “A New Process for Silica Coating,” J. Electrochem. Soc., vol. 135, 1988, pp. 2013-2016.
[37]Chih-Yao Wang and Jenn-Gwo Hwu, “Metal–Oxide–Semiconductor Structure Solar Cell Prepared by Low-Temperature (<400°C) Anodization Technique,” J. Electrochem. Soc., vol. 156, 2009, H181-H183.
[38]Van Dyk E. E. and Meyer E. L. “Analysis of the effect of parasitic resistances on the performance of photovoltaic modles,” Renew Energy., vol. 29, 2004, pp. 333-344.
[39]O. Hasegawa and R. Namazu, “Zn diffusion into GaAs by a two-temperature method,” Appl. Phys. Lett., vol. 36, 1980, pp. 203-205.
[40]N. Arnold, R. Schmitt, and K. Heime, “Diffusion in III-V semiconductors from spin-on film sources,” J. Phys. D: Appl. Phys., vol. 17, 1984, pp. 443-474.
[41]H. Albrecht and Ch. Lauterbach, “Diffusion from SiO2: Zn spin-on films into n-In0.53Ga0.47As,” Japan. J. Appl. Phys., vol. 25, 1986, pp. L589-L591.
[42]D. Mathiot, A. Lachiq, A. Slaoui, S. NoeE l, J.C. Muller, C. Dubois, “Phosphorus diffusion from a spin-on doped glass (SOD) source during rapid thermal annealing,” Materials Science in Semiconductor Processing, vol. 1, 1998, pp. 231-236.
[43]施敏,黃調元,半導體元件物理與製作技術,國立交通大學出版社,2010。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊