跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 19:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡維霖
研究生(外文):Wei-Lin Tsai
論文名稱:在生醫純鈦金屬上披覆氫氧基磷灰石與銀之研究
論文名稱(外文):Study of Hydroxyapatite and Ag Coating on Pure Ti
指導教授:薛文景
口試委員:陳適範陳建仲
口試日期:2014-06-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:80
中文關鍵詞:生醫植入材氫氧基磷灰石電化學沉積電壓
外文關鍵詞:BiomaterialHydroxyapatiteElectrochemical depositionAgVoltage
相關次數:
  • 被引用被引用:1
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
生醫植入材中鈦金屬及鈦合金材料之機械性質較原骨骼組織之性質較相近,且與生物體有良好的生物相容性,因此近年來被大量的應用於生物植入體。但金屬植入材料經長時間接觸生物體之細胞與體液、血液時,會有金屬離子的釋出、材料碎片之生成與表面不容易吸附組織細胞等問題存在。所以本研究旨以氫氧基磷灰石(HA,Ca10(PO4)6(OH)2)披覆於純鈦金屬板上做表面改質,其可促進骨組織的沉積與固定。披覆氫氧基磷灰石的方法種類很多,其中使用電化學沉積法沉積氫氧基磷灰石可控制鍍膜厚度與形貌,提供一個高製程控制能力的氫氧基磷灰石披覆層。
本研究以純鈦金屬板為試樣,置於60℃的四水硝酸鈣、磷酸二氫氨之混合電解液中,外加直流電源施於試片使之沉積氫氧基磷灰石之披覆層。再使試片浸泡於硝酸銀水溶液中24小時。其不同成分磷酸鈣相的生成依據外加電壓的變化而有所改變。當外加電壓大於3.5伏特時,其鍍膜的主要成份為氫氧基磷灰石(HA),電壓介於16~19伏特時會有較佳之鈣磷比。以X光繞射(XRD)、掃描式電子顯微鏡(SEM) 、能量分散X光光譜(EDX)、傅里葉轉換紅外光譜(FT-IR)檢測成分,再測量鍵結強度、硬度、表面粗糙度分析鍍層表面機械性質。


Pure Titanium and Titanium alloys have been used in biomaterials due to the mechanical properties and bone-compatible. The metal implants contact to blood and tissue in body will release metal ions and scraps. This study use Hydroxyapatite (HA,Ca10(PO4)6(OH)2) coating on pure Ti. Electrochemical deposition can provide a highly free degree of process control and produce a thin film coating of HA.
Pure Ti specimens were coated HA by electrochemical deposition at 60℃ from the electrolyte mixtures of Ca(NO3)2•4H2O and NH4H2PO4. Then put into Silver nitrate solution for 24 hours. Different phases of calcium phosphates may be fromed on the base layer depending on the additional voltage. HA was obtained on the surface at the voltage over 3.5 V. Highly pure HA coating was obtained by additional voltage from 16 V to 19 V. Use X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR) examine the component.


摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表 目 錄 vii
圖 目 錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 理論基礎與文獻回顧 5
2.1 生醫材料簡介 5
2.2 生醫植入材料 6
2.4 鈦的性質 10
2.3 生醫陶瓷分類 13
2.3.1 惰性、近惰性生醫陶瓷 13
2.3.2 表面活性生醫陶瓷 14
2.3.3 可吸收性生醫陶瓷 14
2.4 氫氧基磷灰石(HA) 16
2.5 氫氧基磷灰石合成方法 18
2.6 披覆氫氧基磷灰石塗層之方法 19
2.6.1. 電化學沉積 19
2.5.2. 電漿噴塗法 21
2.5.3. 燒結法(Sintering) 21
2.5.4. 溶膠-凝膠法(Sol-gel deposition) 22
2.5.5. 化學共沉法(Chemical co-precipitation) 22
2.6 鍍層沉積原理 23
2.7 鈦及鈦合金基材與氫氧基磷灰石鍍層附著性改善 25
2.8 電化學之氫氧基磷灰石鍍層影響因素 27
2.9 骨替代材的測試與分析方法 29
2.10 銀 30
2.10.1 銀的殺菌原理 30
第三章 實驗方法 31
3.1 實驗藥品 31
3.2 實驗儀器 32
3.3 實驗流程 34
3.4 實驗步驟與方法 35
3.4.1 試片製備與前處理 35
3.4.2 電解液調配 35
3.4.3 電化學實驗設備與方法 35
3.4.4 硝酸銀水溶液製備 35
3.4.5 熱處理 36
3.5 材料分析 38
3.5.1 X-ray繞射分析 38
3.5.2 掃描電子顯微鏡分析 39
3.5.3 EDS元素分析 39
3.5.4 傅力葉紅外線光譜儀(Fourier transform infrared spectrometer,FT-IR) 40
3.5.5 材料機械性質檢測 40
3.5.6 模擬人工體液 45
3.5.7 人工體液中的溶解與吸附行為 47
第四章 結果與討論 48
4.1 陶瓷氧化膜XRD 分析 48
4.2 材料顯微結構分析(SEM) 50
4.3 X光能量散佈分析(EDS) 56
4.4 傅立葉轉換紅外線光譜分析(FTIR) 62
4.5 膜層表面粗糙度分析 64
4.6 表面鍍層鍵結力分析 67
4.7 鍍膜硬度測試 68
4.8 模擬人工體液浸泡實驗 69
第五章 結論 74
參考文獻 76



[1]J.A. Helsen and H.J. Breme Edited, Metals as Biomaterials, John Wiley & Sons Ltd, (1998).
[2]A. Gefen, “Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws” Med. Biol. Eng. Comput., 40, 311–322(2002)。
[3]Jiawei Wang, Klaas de Groot, Clemens van Blitterswijk, Jan de Boer“Electrolytic deposition of lithium into calcium phosphate coatings” dental materials, vol.225, pp.353–359 (2009)
[4]Thomas W. Bauer, and George F. Muschler., “Bone graft materials,” Clinical Orthopaedics and Related Research. Number 371, 2000, pp. 10-27.
[5]俞耀庭,林峰輝,白育綸,生物醫用材料,初版,新文京,台北(2004)
[6]Q. Liu, J. R. de Wijn, C. A. van Blitterswijk, “Covalent bonding of PMMA,PBMA, and poly(HEMA) to hydroxyapatite particles,” J. Biomed. Mater. Res.Vol. 40, 1998, pp. 257-263.
[7]K. H. Rateitschak, H. F., “Wolf Color Atlas of Dental Medicline,” Thieme Medical Publishers, 1995, pp.11-24.
[8]M. S. Block, J. N. Kent and L. S. Guerra, “Implants in density,” W. B. Saunders CoMPany, 1997, pp. 45-62.
[9]J. B. Park, “Biomaterials, An Introduction,” New York:Plenue Press, 1979, pp. 4.
[10]K. H. Rateitschak, H. F. Wolf Color Atlas of Dental Medicline, Thieme Medical Publishers, 1995, pp.11-24.
[11]M. S. Block, J. N. Kent and L. S. Guerra, Implants in density, W. B. Saunders Company, 1997, pp. 45-62.
[12]J. B. Park, Biomaterials, An Introduction, New York:Plenue Press, 1979, pp. 4
[13]Gisep, “A. Research on ceramic bone substitutes: current status,” Injury, Vol.33, 2002, pp. 88-92.
[14]Fujibayashi S, Kim HM, Neo M, Uchida M, Kokubo T, Nakamura T., “Repair of segmental long bone defect in rabbit femur using bioactivetitanium cylindrical mesh cage,” Biomaterials, Vol. 24, 2003, pp. 3445-3451.
[15]Alam MI, Asahina I, Ohmamiuda K, Takahashi K, Yokota S, Enomoto S., “Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2.,” Biomaterials , Vol. 22, 2001, pp. 1643-1651.
[16]Saito N, Takaoka T., “New synthetic biodegradable polymers as BMP carriers for bone tissue engineering,” Biomaterials, Vol. 24, 2003, pp. 2287-2293.
[17]王盈錦,「生物醫學材料」,臺北市,合記圖書出版社,2002,196頁。
[18]M. Jarcho, “Calcium phosphate ceramics as hard tissue”, Clin. Orthop. Rel. Res., Vol.157, 1981, p. 259-279.
[19]Lomg M,et al .Biomaterials,19 (1998), pp.1621
[20]W. Suchanek, M. Yoshimura. Processing and properties of hydroxyapati te-based biomaterials for use as hard tissue replacement implants, J. Mater. Res., 13 (1998) 94-117.
[21]S. F. Hulbert, J. C. Bokros, L. L. Hench, J. W. Wilson and G. Heimke, “Ceramics in clinical applications, past, present and future”, Ceramics in Clinical Applications,1987, pp.3-27.
[22]J.F.Shackelford, ”Bioceramics-An Historical Perspective,” Materials science forum, Vol.293, 1999, pp. 1-4.
[23]L. L. Hench and E.C. Ethridge, “Biomaterial” Academic Press Inc., 1982.
[24]經濟部中央標準局,「表面粗糙度」,中國國家標準CNS,總號7868,類號B1272, 1981年12月印行。
[25]Charles E. Rawlings III, M.D., Robert H. Wilking, M.D.,Jacob S. Hanker, PH.D., Nichilas G. Georgiade,D.D.S.,M.D.,and John M.Harrelson,M.D.”Evaluation in cat
[26]R.Z. LeGeros, “Apatites in biological systems”, Prog. Growth Charact, 4, pp.1-45. (1981)
[27]A. Boyde, A Corsi, R. Quarto, R. Cancedda and P. Bianco, “Osteoconduction in large macroporous hydroxyapatite ceramic implant :Evidence for a complementary integration and disintegration mechanism”,Bone, 24, pp.579-589, (1999).
[28]Chow LC, “Development of self-setting calcium phosphate cement,” J. Ceram. Soc. Jpn., 99, 1991, p. 954-964.
[29]Koji Ioku, Giichiro Kawachi, Manami Toda, Shuji Sasaki, HirotakaFujimori and Seishi Goto, “Porous Apatite Ceramics Prepared by Hydrothermal Method” 14th International Conference on the Properties ofWater and Steam in Kyoto (2004)
[30]王寶琪,“電漿熔射氫氧基磷灰石被覆於鈦鋁釩合金基材之塗層特性與生物反應研究"國立成功大學材料科學及工程研究所,碩士論文(1994)。
[31]S.H. Rhee, J. Tanaka, Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid, Biomaterials 20(1999) 2155-2160.
[32]X. Lu, Y. Leng . Theretical analysis of calcium phosphate precipitation in simulated bidy fluid, Biomaterials, 26(2005),1097-1108.
[33]S. K. Yen, C. M. Lin, “Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium”, Material chemistry and phys, 77, pp70, (2002).
[34]鍾育霖,“類鑚碳膜鍍於人工植體上之性質分析與生物相容性研究”,國立高雄應用科技大學機械與精密工程所,碩士論文(2005)
[35]K. Hayashi, T. Mashima, K. Uenoyama, “The effect of hydroxyapatite coating on Bony ingrowth into grooved titanium implant”, Biomaterials, 20, pp 111, (1999).
[36]Xuebin Zheng, Minhui Huang, Chuanxian Ding, “Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings”, Biomaterial, 21, pp 841, (2000).
[37]S. K. Yen, C. M. Lin, “Characterization of electrolytic Al2O3/CaP composite coating on pure titanium,” Journal of electrochemical Society, 149, pp 79, (2002).
[38]V. Nelea, H. Pelletier, P. Mille, D. Muller, ” High-energy ion beam implantation of hydroxyapatite thin films grown on TiN and ZrO2 inter-layers by pulsed laser deposition ”, Thin solid films, 453 –454, pp 208, (2004).
[39]D.C.R. Hardy, P. Frayssinet, A. Guilhem, M.A. Lafontaine, “Bonding of hydroxyapatite-coated femoral prostheses”, J. Bone Joint Surg., 73B,pp.732-738, (1991).
[40]R.J. Furlong and J.F. Osborn, “Fixation of hip prostheses by hydroxyapatite ceramic coatings”, J. Bone Joint Surg., 73B, pp.741-745, (1991).
[41]R.G.T. Geesink and M.D., “Hydroxyapatite-coated total hip prosthese”,Clinical Orthopaedics and Related Research, 261, pp.39-58, (1990).
[42]J. Zhou, X. Zhang, J. Chen, S. Zeng and K. de Groot, “High temperature characteristics of synthetic hydroxyapatite”, J. Mater. Sci. Mater. Med., 4, pp.83-85, (1993).
[43]Kay Teraoka, Atsuo Ito, Kazuo Onuma, Tetsuya Tateishi, and Sadao Tsutsumi, “Bending strength of synthetic OH-carbonated hydroxyapatite single crystals” Journal of Biomedical Materials Research, 34, pp.269, (1997).
[44]林錦添, “Ti-6Al-4V 合金披覆磷酸鈣之研究”,國立台北科技大學-材料及資源工程 系,pp.30. (2002).
[45]W. Suchanek, M. Yoshimura. Processing and properties of hydroxyapati te-based biomaterials for use as hard tissue replacement implants, J. Mater. Res., 13 (1998) 94-117.
[46]洪敏雄,林峰輝,王盈錦,陶瓷技術手冊(下),中華民國產業科技發展協進會,1994。
[47]廖俊仁,生醫骨科陶瓷材料之發展與應用,生技醫藥專題。
[48]劉典謨,生醫玻璃/玻璃陶瓷材料,材料與社會,第75 期,82 年3 月。
[49]Radin S. R., Ducheyne P., 1993, “The Effect of Calcium Phosphate Ceramic Composition and Structure on in Vitro Behavior. Ⅱ. Precipitation” J. Biomed. Mater. Res., Vol. 27, pp.35-45.
[50]Feng H. L., Chun J. L., Ko S. C., Jui S. S., Chun P. L., 2001, “Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water” Biomaterials, Vol. 22, pp. 2981-2992.
[51]Clifford A., Rafferty A., Mooney P., Wood D., Samuneva B., Matsuya S., “The influence of calcium to phosphate ratio on the nucleation and crystallization of apatite glass- ceramics,” Materials in medicine Vol. 12, 2001, pp. 461-469.
[52]Daqing Wei, Yu Zhou , Dechang Jia, Yaming Wang. Structure of calcium titanate/titania bioceramic composite coatings on titanium alloy and apatite deposition on their surfaces in a simulated body fluid, Surface & Coatings Technology 201 (2007) 8715–8722
[53]M. C. Chang, J. Tanaka, “FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde”, Biomaterials, 23(24), 4811–4818, (2002).
[54]Wei Ye, Xiao-Xiang Wang “Ribbon-like and rod-like hydroxyapatite crystals deposited on titaniumsurface with electrochemical method” Materials Letters 61, 4062–4065, (2007)。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top