跳到主要內容

臺灣博碩士論文加值系統

(44.200.145.223) 您好!臺灣時間:2023/05/28 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳依婷
研究生(外文):Yi-Ting Chen
論文名稱:銅鉻氧化物靜電紡絲之製備及其特性之研究
論文名稱(外文):Fabrication and characteristics of electrospun Cu-Cr-O fiber
指導教授:邱德威
指導教授(外文):Te-Wei Chiu
口試委員:蘇昭瑾雷健明
口試委員(外文):Chao-Chin SuChien-Ming Lei
口試日期:2014-06-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:84
中文關鍵詞:靜電紡絲法CuCrO2CuCr2O4
外文關鍵詞:EelectrospinningCuCrO2CuCr2O4Functional ceramicsCatalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
銅鉻氧化物因在許多化學反應中具有良好催化效果而受到密集的研究,可應用範圍十分廣泛。本實驗首次以靜電紡絲法製備出一維結構之銅鉻氧化物奈米纖維,並探討不同前驅液濃度、熱處理溫度、升溫速率及退火氣氛對其性質之影響。前驅液經電紡製程後,纖維以熱重量分析儀分析其熱分解行為,纖維經熱處理後以X光繞射分析儀分析結構、場發射式掃描電子顯微鏡觀察表面形貌並以比表面積分析儀量測纖維之比表面積。
本論文可分為兩大部分,第一部分為探討尖晶石型CuCr2O4電紡纖維之製備,由X光繞射分析儀分析結果可知,電紡絲在熱處理溫度600?C以上即可得CuCr2O4純相;由場發射式掃描電子顯微鏡分析表面形貌可知,快速升溫退火製程可抑制纖維燒結而使直徑降低;在700?C快速升溫退火20分鐘時,可得最低直徑為179.7奈米之CuCr2O4電紡纖維,其比表面積經量測可達8.32 m2/g。
第二部分為探討赤銅鐵礦CuCrO2電紡纖維之製備,比較各種無氧氣氛下退火後CuCrO2電紡纖維之相組成變化,由X光繞射分析儀及場發射式掃描電子顯微鏡分析結果可知,在真空環境下快速升溫退火,聚乙烯醇吡咯烷酮(PVP)分解氣氛可抑制尖晶石結構CuCr2O4相之生成,降低CuCrO2合成溫度,而在700?C得到CuCrO2之純相電紡纖維。合成之纖維可應用於甲醇蒸氣轉換產氫觸媒。


Copper-based catalysts are extensively studied due to their good catalytic performance in many applications such as steam reforming of methanol. In this work, one-dimensional Cu-Cr-O nanofiber fabricated via electrospinning method. It has been first demonstrated in present study. This experiment explored the effect of annealing temperature, heating rate, precursor concentration, and annealing ambient on fiber structure. The thermal decomposition behavior of the electrospun fiber was examined using a Thermogravimetric and Differential Thermal Analyzer. The crystalline phases of the fibers were identified using the theta-2thata X-ray diffraction meter and the morphology of fiber was studied by field emission scanning electronic microscope. Brunauer-Emmett-Teller method (BET) is used to measure the specific surface area of the fiber.
This work is divided into two main parts. First part is discussed the fabrication of CuCr2O4 fiber. The XRD analysis shows that the spinel CuCr2O4 fiber was obtained when the temperature was up to 600?C. Rapid thermal treatment can inhibit the sintering of the fiber and remain high aspect ratio. When the annealing time increased up to 15 min., single phase CuCr2O4 is formed. Furthermore, the fiber annealed at 700?C for 20 min. can obtained the thinnest diameter of 179 nm and the calculated maximum theoretical specific surface area is 4.13 m2/g, BET specific surface area was measured as 8.32 m2/g.
The second part discussed the annealing ambient in fabrication of CuCrO2 fiber. Annealing conditions, such as ambient gas and temperature, are investigated. The reducing atmosphere helps obtain the CuCrO2 phase thermodynamically hence CuCrO2 could be synthesized under a relatively low temperature. The experimental results show that the single-phase delaffosite CuCrO2 fiber was obtained after annealed in vacuum at 700?C for 20 minutes.


TABLE OF CONTENTS

摘 要 ii
ABSTRACT iv
TABLE OF CONTENTS vi
List of tables viii
List of figures ix
Chapter 1 Introduction 1
1.1 Cu-Cr-O composite 1
1.1.1 Spinel structure 1
1.1.2 Delafossite structure 3
1.2 Sol-gel processing 4
1.3 Electrospinning method 6
1.3.1 Evolution 6
1.3.2 Principle 6
1.3.3 Electrospinning of ceramic nanofibers 9
1.4 Methanol reforming 10
Reference 14
Chapter 2 Experimental details 19
2.1 Experimental reagents 19
2.2 Experimental gases 19
2.3 Precursor preparation 20
2.4 Instruments of electrospun fiber preparation 20
2.4.1 Electrospinning set up 20
2.4.2 Heat treatment of fibers 22
2.5 Characteristic analysis 23
2.5.1 Thermal decomposition behavior 23
2.5.2 Crystalline determination 24
2.5.3 Scanning electron microscope image observation 25
2.5.4 The specific surface area measurement 26
Chapter 3 Fabrication of CuCr2O4 fiber via electrospinning method 28
3.1 Introduction 28
3.2 Experiment 29
3.2.1 Preparation of CuCr2O4 precursor solution 31
3.2.2 Electrospinning process 31
3.2.3 Thermal treatment of CuCr2O4 fibers 33
3.2.4 Characterization techniques 34
3.3 Result and discussion 34
3.3.1 TGA curve of CuCr2O4 electrspun fiber 34
3.3.2 Annealing temperature of CuCr2O4 electrospun fibers 36
3.3.3 Effect of heating rate on fiber morphology 39
3.3.4 The effect of precursor concentration on fiber 44
3.4 Conclusions 47
3.5 Acknowledgement 47
Reference 48
Chapter 4 Fabrication of CuCrO2 fiber via electrospinning method 52
4.1 Introduction 52
4.2 Experimental 53
4.2.1 Preparation of CuCrO2 precursor solution 55
4.2.2 Electrospinning process 55
4.2.3 Thermal treatment of CuCrO2 fibers 57
4.2.4 The annealing ambient of CuCrO2 fibers 57
4.2.5 Two-step methods 59
4.2.6 Characterization techniques 60
4.3 Result and discussion 61
4.3.1 TGA curve of CuCrO2 electrspun fiber 61
4.3.2 Annealed in the air 64
4.3.3 Annealed in N2 66
4.3.4 Two-step annealed in forming gas (T-1) 70
4.3.5 Two-step annealed in the Air and N2 (T-2) 73
4.3.6 Annealed in vacuum 76
4.4 Conclusions 78
Reference 80
Chapter 5 Summary 82
Conference Presentations 84


CHAPTER 1
[1]H. Adkins and R. Connor, “The Catalytic Hydrogenation of Organic Compounds over Copper Chromite”, J. Am. Chem. Soc., 53:1091-1095 (1931).
[2]C.Y. Shiau, S. Chen, J.C. Tsai, and S.I. Lin, “Effect of zinc addition on copper catalyst in isoamyl alcohol dehydrogenation”, Appl. Catal. A:Gen, 198:95-102 (2000).
[3]M. Crivello, C. Pe’rez, J. Ferna’ndez, G. Eimer, E. Herrero, S. Casuscelli, and E. Rodrı’guez-Castello’n, “Synthesis and characterization of Cr/Cu/Mg mixed oxides obtained from hydrotalcite-type compounds and their application in the dehydrogenation of isoamylic alcohol”, Appl. Catal. A: Gen., 317:11-19 (2007).
[4]T. J. Huang, K. C. Lee, H. W. Yang, and W. P. Dow, “Effect of chromium addition on supported copper catalysts for carbon monoxide oxidation”, Appl. Catal. A: Gen., 174:199-206 (1998).
[5]A. M. Kawamoto, L. C. Pardini and L. C. Rezende, “Synthesis of copper chromite catalyst”, Aerospace Sci. Technol., 8:591-598 (2004)
[6]R. Rajeev, K. A. Devi, A. Abraham, K. Krishnan, T. E. Krishnan,K. N. Ninan, and C. G. R. Nair, “Thermal decomposition studies. Part19. Kinetics and mechanism of thermal decomposition of copper ammonium chromate precursor to copper chromite catalyst and correlation of surface parameters of the catalyst with propellant burning rate”, Thermochim. Acta., 254:235-247 (1995).
[7]洪瑞騰,林育德,邱德威*,余炳盛,王玉瑞,龜岡聰,蔡安邦, “利用CuCrO2奈米粉末製備高效率甲醇蒸氣重組產氫銅基觸媒”,陶業季刊,第三十卷,第四期,18-25頁,民國一百年十月(ISSN: 1012-5442)
[8]P. K. Baltzer, P. J. Wojtowicz, M. Robbins, and E. Lopatin, “Exchange Interactions in Ferromagnetic Chromium Chalcogenide Syinels”, Phys. Rev, 151:367–377 (1966).
[9]D. Fiorani and S. Viticoli, “Magnetic properties of the antiferromagnetic frustrated system ZnCr2xGa2−2xO4”, J. Magn. Magn. Mater., 49:83–92 (1985).
[10]E. Prince, “Crystal and magnetic structure of copper chromite”, Acta. Cryst., 10: 554–557 (1957).
[11]J. D. Dunitz, L. E. Orgel, “Electronic properties of transition-metal oxides—I: Distortions from cubic symmetry”, J. Phys. Chem. Solids, 3:20–29 (1975).
[12]S. Borda’cs, D. Varjas, I. Ke’zsma’rki, G. Miha’ly, L. Baldassarre, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, and Y. Tokura, “Magnetic-Order-Induced Crystal Symmetry Lowering in ACr2O4 Ferrimagnetic Spinels”, Phys. Rev., 103:077205 (2009).
[13]B.J. Ingram, T.O. Mason, R. Asahi, K.T. Park, and A.J. Freeman, “Electronic structure and small polaron hole transport of copper aluminate”, Phys. Rev. B, 64: 155114 (2001)
[14]N. Duan, A.W. Sleight, M.K. Jayaraj, and J. Tate, “Transparent p-type conducting CuScO2+ x films”, Appl. Phys. Lett. 77:1325-1326 (2000).
[15]R. Nagarajan, A. D. Draeseke, A. W. Sleight, and J. Tate, “p-type conductivity in films and powders”, J. Appl. Phys. 89:8022 (2001).
[16]M. K. Jayaraj, A. D. Draeseke, J. Tate, and A. W. Sleight, “p-Type transparent thin films of CuY1-x CaxO2”, Thin Solid Films 397:244-248 (2001).
[17]L. F. Mattheiss, “Electronic properties of the ordered delafossite-type superoxides YCuO2+ δ”, Phys. Rev. B, 48:18300-18303 (1993).
[18]G. Thomas, “Materials science: Invisible circuits”, Nature, 389:907-908 (1997).
[19]S. Sakka and H. Kozuma, “Handbook of sol-gel science and technology.” Vol. 1. Sol-gel processing. (2004)
[20]W. E Teo and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies”, Nanotechnol, 17:R89-R106 (2006).
[21]J. T. McCann, D. Li and Y. N. Xia, “Electrospinning of nanofibers with core-sheath, hollow, or porous structures”, J. Mater. Chem., 15:735-738 (2005).
[22]W. Sigmund, J. Yuh, H. Park, et al., “Processing and structure relationships in electrospinning of ceramic fiber systems”, J. Am. Ceram. Soc., 89:395-407 (2006).
[23]R. Ramaseshan, S. Sundarrajan, R. Jose, et al., “Nanostructured ceramics by electrospinning”, J. Appl. Phys., 102:111101-111117 (2007).
[24]D. Li and Y. N. Xia, “Electrospinning of nanofibers: Reinventing the wheel?”, Adv. Mater, 16: 1151-1170 (2004)
[25]D. Li, Y. L. Wang, Y. N. Xia, “Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays”, Nano. Lett, 3: 1167-1171 (2003).
[26]D. Li, J. T. McCann, Y. N. Xia, “Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes”, J. Am. Ceram. Soc., 89: 1861-1869 (2006).
[27]R. Dersch, M. Graeser, A. Greiner, et al., “Electrospinning of nanofibres: Towards new techniques, functions, and applications”, Aust. J. Chem., 60:719-728 (2007).
[28]D. Li, Y. N. Xia, “Fabrication of titania nanofibers by electrospinning”, Nano. Lett., 3:555-560 (2003).
[29]H. Wu, W. Pan, D. Lin, H. Li, “Electrospinning of ceramic nanofibers: Fabrication, assembly and applications”, J. Adv. Ceram., 1:2-23 (2012).
[30]Z. M. Huang, Y. Z. Zhang, M. Kotaki, et al., “A review on polymer nanofibers by electrospinning and their applications in nanocomposites”, Comp. Sci. Technol., 63:2223-2253 (2003).
[31]Q. P. Pham, U. Sharma, A. G. Mikos, “Electrospinning of polymeric nanofibers for tissue engineering applications: A review”, Tissue Eng., 12:1197-1211 (2006).
[32]D. Lin, W. Pan, H. Wu, “Morphological control of centimeter long aluminum-doped zinc oxide nanofibers prepared by electrospinning”, J. Am. Ceram. Soc., 90:71-76 (2007).
[33]P. J. De Wild and M. J. F. M. Verhaak, “. Catalytic production of hydrogen from methanol”, Catal. Today, 60:3-10 (2000).
[34]T. Valde’s-Soli’s, G. Marba’n, and A. B. Fuertes, “Nanosized catalysts for the production of hydrogen by methanol steam reformin”, Catal. Today, 116: 54-360 (2006).
[35]F. Joensen, Rostrup-Nielsen and J. R, “Conversion of hydrocarbons and alcohols for fuel cells”, J. Power Sources, 105:195-201 (2002).
[36]B. Ho‥hlein, M. Boe, J. Bogild-Hansen, P. Bro‥ckererhoff, G. Colsman, B. Emonts, R. Menzer, and E. Riedel, “.Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer”, J. Power Sources, 61: 143-147 (1996).
[37]L. Ma, B. Gong, T. Tran, Wainwright, and M.S., “Cr2O3 promoted skeletal Cu catalysts for the reactions of methanol steam reforming and water gas shift”, Catal. Today, 63:499-505 (2000).
[38]W. H Cheng, I. Chen, J. S. Liou, and S. S. Lin, “Supported Cu catalysts with yttria-doped ceria for steam reforming of methanol”, Top Catal., 22: 3-4 (2003).
[39]W. S. Chen, F. W. Chang, L. S. Roselin, T. C. Ou, S. C. Lai, “Partial oxidation of methanol over copper catalysts supported on rice husk ash”, J. Mol. Catal. A: Chem., 318: 36-43 (2010).
[40]P. Reuse, A. Renken, K. Haas-Santo, O. Go‥rke, and K. Schubert, “Hydrogen production for fuel cell application in an autothermal micro-channel reactor”, Chem. Eng. J., 101: 133-141 (2004).
[41]R. M. Navarro, M. A. Pena, C. Merino, and J. L. G Fierro, “Production of hydrogen by partial oxidation of methanol over carbon-supported copper catalysts”, Top. Catal., 30/31: 481-486 (2004).
[42]C. Horny, A. Renken and L. Kiwi-Minsker, “Compact string reactor for autothermal hydrogen production”, Catal. Today, 120: 45-53 (2007).

CHAPTER 3
[1]R. Rao, A. Dandekar, R. Baker, T. K. Baker, and M. A. Vannice, “Properties of Copper Chromite Catalysts in Hydrogenation Reactions”, J. Catal., 171: 406-419 (1997).
[2]R. Prasad, “Highly active copper chromite catalyst produced by thermal decomposition of ammoniac copperoxalate chromate”, Mater. Lett., 59: 3945-3949 (2005).
[3]Z. Ma, Z. Xiao, J. A. V. Bokhoven, and C. Liang, “A non-alkoxide sol-gel route to highly active and selective Cu-Cr catalysts for glycerol conversion”, J. Mater. Chem., 20:755-760 (2010).
[4]K. George and S. Sugunan, “Nickel substituted copper chromite spinels: Preparation, characterization and catalytic activity in the oxidation reaction of ethylbenzene.” Catal. Commun., 9:2149-2153 (2008).
[5]S. Barman, Acharya, N.C.P.A., and P. Pramanik, “Kinetics of Reductive Isopropylation of Benzene with Acetone over Nano-Copper Chromite-Loaded H-Mordenite”, .Ind. Eng. Chem. Res., 45: 3481-3487 (2006).
[6]H. Wang, L. Chen, D. Luan, Y. Li, Z. Yan, Y. Zhang, and J. Xing, “A continuous process for the synthesis of homopiperazine catalyzed by Cu-based catalysts”, .React. Kinet. Catal. Lett, 89: 201-208 (2006).
[7]R. Prasad, “Highly active copper chromite catalyst produced by thermal decomposition of ammoniac copper oxalate chromate”, Mater. Lett., 59:3945−3949 (2005).
[8]P. S. Sathiskumar, C. R. Thomas and Giridhar Madras, “Solution Combustion Synthesis of Nanosized Copper Chromite and Its Use as a Burn Rate Modifier in Solid Propellants”, Ind. Eng. Chem. Res., 51:10108-10116 (2012).
[9]E. A. Campos, R. C. L. Dutra, L. C. Rezende, M. F. Diniz, W. M. D. Nawa, and K. Iha, “Performance evaluation of commercial copper chromites as burning rate catalyst for solid propellants”, J. Aerosol. Sci., 2:323-330 (2010).
[10]T. Valdes-Solis, G. Marban and A. B. Fuertes, “Nanosized catalysts for the production of hydrogen by methanol steam reforming”, Catal. Today, 116:354-360 (2006).
[11]S. Boumaza, A. Auroux, S. Bennici, A. Boudjemaa, M. Trari, A. Bouguelia, and R. Bouarab, “Water gas shift reaction over the CuB2O4 spinel catalysts”, React. Kinet. Catal. Lett., 100:145-151 (2010).
[12]D. M. Ginosar, H. W. Rollins, L. M. Petkovic, K. C. Burch, M. J. Rush, “High-temperature sulfuric acid decomposition over complex metal oxide catalysts. ”, Int. J. Hydrogen Energ., 34: 4065 – 4073 (2009).
[13]T. P. Maniecki, P. Mierczynski, W. Maniukiewicz, K. Bawolak, D. Gebauer, W. Jozwiak, “Bimetallic Au-Cu, Ag-Cu/CrAl3O6 Catalysts for Methanol Synthesis.”, Catal. Lett., 130: 481-488 (2009).
[14]A. Pattiya, J.O. Titiloye, A.V. Bridgwater, “Fast pyrolysis of cassava rhizome in the presence of catalysts.”, J. Anal. Appl. Pyrolysis, 81: 72-79 (2008).
[15]B. M. Latha, V. S. adasivam, and B. Sivasankar, “A highly selective synthesis of pyrazine from ethylenediamine on copper oxide/copper chromite catalysts.”, Catal. Commun., 8: 1070-1073 (2007).
[16]R. Hubaut, “Study of the Competitive Reactions between α-β-Unsaturated Aldehyde and Allylic Alcohol on a Copper Chromite Catalyst.”, React. Kinet. Catalo Left., 46: 25-32 (1992).
[17]Z. Li and M. Flytzani-Stephanopoulos, “Cu-Cr-O and Cu-Ce-O Regenerable Oxide Sorbents for Hot Gas Desulfurization.”, Ind. Eng. Chem. Res., 36:187-196 (1997)
[18]W. Xiong and G. M. Kale, “High-selectivity mixedpotential NO2 sensor incorporating Au and CuO + CuCr2O4 electrode couple”, Sens. Actuators, B, 119: 409- 414 (2006).
[19]D. Li, X. Fang, W. Dong, Z. Deng, R. Tao, S. Zhou, J. Wang, T. Wang, Y. Zhao, and X. Zhu, “Magnetic and electrical properties of p-type Mn-doped CuCrO2 Semiconductors”, J. Phys. D: Appl. Phys., 42: 055009 ( 2009).
[20]H. Cui, M. Zayat, and D. Levy, “Sol-Gel synthesis of nanoscaled spinels using sropylene oxide as a gelation agent”, J. Sol-Gel Sci. Technol., 35: 175-181 (2005).
[21]Q. Geng, X. Zhao, X. Gao, S. Yang, and G. Liu, “Low-temperature combustion synthesis of CuCr2O4 spinel powder for spectrally selective paints”, J. Sol-Gel. Sci. Technol., 61:281-288 (2012).
[22]B. Delmon, “Preparation of heterogeneous catalysts”, J. Therm. Anal. Calorim., 90:49-65 (2007).
[23]A. M. Kawamoto, L. C. Pardini and L. C. Rezende, “Synthesis of copper chromite catalyst.” Aerosol Sci. Technol., 8:591-598 (2004).
[24]R. W. Armstrong, B. Baschung and D. W. Booth, “Enhanced propellant combustion with nanoparticles”, Nano. Lett., 3: 253-255 (2003).
[25]K. C. Patil, S. T. Aruna, S. Ekambaram, “Combustion synthesis. Combust”, Sci. Technol., 138: 279- 85 (1998).
[26]K. C .Patil, S. T. Aruna, T. Mimani, “Combustion synthesis: an update”, Curr. Opin. Solid State Mater. Sci., 6: 507-512 (2002).
[27]C. Y. Shiau, Y. R Lee, “Characterization and dehydrogenation activity of Cr-added electroless plated copper catalyst.”, Appl. Catal..A: Gen,. 220: 173-180 (2001).
[28]B. J. Liawa, Y. Z. Chen, “Catalysis of ultrafine CuB catalyst for hydrogenation of olefinic and carbonyl groups”,. Appl. Catal. A: Gen. 196: 199-207 (2000).
[29]J. Yan, L. Zhang, H. Yang, Y. Tang, Z. Lu, S. Guo, and M. Yao, “CuCr2O4/TiO2 heterojunction for photocatalytic H2 evolution under simulated sunlight irradiation”, Sol. Energy Mater. Sol. Cells., 83:1534-1539 (2009).
[30]S. Boumaza, R. Bouarab, M. Trari, and A. Bouguelia, “Hydrogen photo-evolution over the spinel CuCr2O4”, Energy Convers. Manage., 50: 62-68 (2009).

CHAPTER 4
[1]R. Nagarajan, A. D. Draeseke, A. W. Sleight, and J. Tate, “p-type conductivity in CuCr1−xMgxO2 films and powders”, J. Appl. Phys., 8:8022–8025 (2001).
[2]T. W. Chiu, K. Tonooka, and N. Kikuchi, “Fabrication of Transparent CuCrO2:Mg/ZnO p-n Junctions Prepared by Pulsed Laser Deposition on Glass Substrate,” Vacuum, 83:614-617 (2009).
[3]T. W. Chiu, S. W. Tsai, Y. P. Wang, and K. H. Hsu, “Preparation of p-type conductive transparent CuCrO2: Mg thin films by chemical solution deposition with two-step annealing”, Ceram. Int., 38: S673-S676 (2012).
[4]S. Saadi, A. Bouguelia and M. Trari, “Photocatalytic hydrogen evolution over CuCrO2”, Sol. Energy, 80:272–280 (2006).
[5]W. Ketir, A. Bouguelia and M. Trari, “Visible Light Induced NO2− Removal Over CuCrO2 Catalyst”, Water Air Soil Pollut., 199:115–122 (2009).
[6]S. Kameoka, M. Okada and A.P. Tsai, “Preparation of a Novel Copper Catalyst in Terms of the Immiscible Interaction Between Copper and Chromium”, Catal. Lett., 120:252–256 (2008).
[7]S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Tao, G. Meng, T. Wang, “Room temperature ozone sensing properties of p-type CuCrO2nanocrystals”, Sens. Actuators B, 143: 119–123 (2009).
[8]K. Hayashi, K. Sato, T. Nozaki and T. Kajitan, “Effect of Doping on Thermoelectric Properties of Delafossite-Type Oxide CuCrO2”, Jpn. J. Appl. Phys., 47:59–63 (2008).
[9]K. T. Jacob, G. M. Kale, and G. N. K. Iyengar, “Oxygen potentials, Gibbs'' energies and phase relations in the Cu-Cr-O system”, J. Mater. Sci., 21:2753–2758 (1986).
[10]S. H. Lim, S. Desu, and A.C. Rastogi, “Chemical spray pyrolysis deposition and characterization of p-type CuCr1-xMgxO2 transparent oxide semiconductor thin films”, J. Phys. Chem. Solids, 69:2047–2056 (2008).
[11]S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Tao, G. Meng, T. Wang, and X. Zhu, “Hydrothermal synthesis and characterization of CuCrO2 laminar nanocrystals”, J.Cryst. Growth, 310:5375–5379 (2008).
[12]W. Li and H. Cheng, “Synthesis and characterization of Cu-Cr-O nanocomposites”, J. Cent. South Univ. Technol., 14:291–295 (2007).
[13]J. Shu, X. Zhu and T. Yi, “CuCrO2 as anode material for lithium ion batteries”, Electrochim. Acta, 54:2795–2799 (2009).
[14]T. W. Chiu, B. S. Yu, Y. R. Wang, K. T. Chen, and Y. T. Lin, “Synthesis of nanosized CuCrO2 porous powders via a self-combustion glycine nitrate process”, J. Alloys Compd., 509:2933-2935 (2011).




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文