CHAPTER 1
[1]H. Adkins and R. Connor, “The Catalytic Hydrogenation of Organic Compounds over Copper Chromite”, J. Am. Chem. Soc., 53:1091-1095 (1931).
[2]C.Y. Shiau, S. Chen, J.C. Tsai, and S.I. Lin, “Effect of zinc addition on copper catalyst in isoamyl alcohol dehydrogenation”, Appl. Catal. A:Gen, 198:95-102 (2000).
[3]M. Crivello, C. Pe’rez, J. Ferna’ndez, G. Eimer, E. Herrero, S. Casuscelli, and E. Rodrı’guez-Castello’n, “Synthesis and characterization of Cr/Cu/Mg mixed oxides obtained from hydrotalcite-type compounds and their application in the dehydrogenation of isoamylic alcohol”, Appl. Catal. A: Gen., 317:11-19 (2007).
[4]T. J. Huang, K. C. Lee, H. W. Yang, and W. P. Dow, “Effect of chromium addition on supported copper catalysts for carbon monoxide oxidation”, Appl. Catal. A: Gen., 174:199-206 (1998).
[5]A. M. Kawamoto, L. C. Pardini and L. C. Rezende, “Synthesis of copper chromite catalyst”, Aerospace Sci. Technol., 8:591-598 (2004)
[6]R. Rajeev, K. A. Devi, A. Abraham, K. Krishnan, T. E. Krishnan,K. N. Ninan, and C. G. R. Nair, “Thermal decomposition studies. Part19. Kinetics and mechanism of thermal decomposition of copper ammonium chromate precursor to copper chromite catalyst and correlation of surface parameters of the catalyst with propellant burning rate”, Thermochim. Acta., 254:235-247 (1995).
[7]洪瑞騰,林育德,邱德威*,余炳盛,王玉瑞,龜岡聰,蔡安邦, “利用CuCrO2奈米粉末製備高效率甲醇蒸氣重組產氫銅基觸媒”,陶業季刊,第三十卷,第四期,18-25頁,民國一百年十月(ISSN: 1012-5442)[8]P. K. Baltzer, P. J. Wojtowicz, M. Robbins, and E. Lopatin, “Exchange Interactions in Ferromagnetic Chromium Chalcogenide Syinels”, Phys. Rev, 151:367–377 (1966).
[9]D. Fiorani and S. Viticoli, “Magnetic properties of the antiferromagnetic frustrated system ZnCr2xGa2−2xO4”, J. Magn. Magn. Mater., 49:83–92 (1985).
[10]E. Prince, “Crystal and magnetic structure of copper chromite”, Acta. Cryst., 10: 554–557 (1957).
[11]J. D. Dunitz, L. E. Orgel, “Electronic properties of transition-metal oxides—I: Distortions from cubic symmetry”, J. Phys. Chem. Solids, 3:20–29 (1975).
[12]S. Borda’cs, D. Varjas, I. Ke’zsma’rki, G. Miha’ly, L. Baldassarre, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, and Y. Tokura, “Magnetic-Order-Induced Crystal Symmetry Lowering in ACr2O4 Ferrimagnetic Spinels”, Phys. Rev., 103:077205 (2009).
[13]B.J. Ingram, T.O. Mason, R. Asahi, K.T. Park, and A.J. Freeman, “Electronic structure and small polaron hole transport of copper aluminate”, Phys. Rev. B, 64: 155114 (2001)
[14]N. Duan, A.W. Sleight, M.K. Jayaraj, and J. Tate, “Transparent p-type conducting CuScO2+ x films”, Appl. Phys. Lett. 77:1325-1326 (2000).
[15]R. Nagarajan, A. D. Draeseke, A. W. Sleight, and J. Tate, “p-type conductivity in films and powders”, J. Appl. Phys. 89:8022 (2001).
[16]M. K. Jayaraj, A. D. Draeseke, J. Tate, and A. W. Sleight, “p-Type transparent thin films of CuY1-x CaxO2”, Thin Solid Films 397:244-248 (2001).
[17]L. F. Mattheiss, “Electronic properties of the ordered delafossite-type superoxides YCuO2+ δ”, Phys. Rev. B, 48:18300-18303 (1993).
[18]G. Thomas, “Materials science: Invisible circuits”, Nature, 389:907-908 (1997).
[19]S. Sakka and H. Kozuma, “Handbook of sol-gel science and technology.” Vol. 1. Sol-gel processing. (2004)
[20]W. E Teo and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies”, Nanotechnol, 17:R89-R106 (2006).
[21]J. T. McCann, D. Li and Y. N. Xia, “Electrospinning of nanofibers with core-sheath, hollow, or porous structures”, J. Mater. Chem., 15:735-738 (2005).
[22]W. Sigmund, J. Yuh, H. Park, et al., “Processing and structure relationships in electrospinning of ceramic fiber systems”, J. Am. Ceram. Soc., 89:395-407 (2006).
[23]R. Ramaseshan, S. Sundarrajan, R. Jose, et al., “Nanostructured ceramics by electrospinning”, J. Appl. Phys., 102:111101-111117 (2007).
[24]D. Li and Y. N. Xia, “Electrospinning of nanofibers: Reinventing the wheel?”, Adv. Mater, 16: 1151-1170 (2004)
[25]D. Li, Y. L. Wang, Y. N. Xia, “Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays”, Nano. Lett, 3: 1167-1171 (2003).
[26]D. Li, J. T. McCann, Y. N. Xia, “Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes”, J. Am. Ceram. Soc., 89: 1861-1869 (2006).
[27]R. Dersch, M. Graeser, A. Greiner, et al., “Electrospinning of nanofibres: Towards new techniques, functions, and applications”, Aust. J. Chem., 60:719-728 (2007).
[28]D. Li, Y. N. Xia, “Fabrication of titania nanofibers by electrospinning”, Nano. Lett., 3:555-560 (2003).
[29]H. Wu, W. Pan, D. Lin, H. Li, “Electrospinning of ceramic nanofibers: Fabrication, assembly and applications”, J. Adv. Ceram., 1:2-23 (2012).
[30]Z. M. Huang, Y. Z. Zhang, M. Kotaki, et al., “A review on polymer nanofibers by electrospinning and their applications in nanocomposites”, Comp. Sci. Technol., 63:2223-2253 (2003).
[31]Q. P. Pham, U. Sharma, A. G. Mikos, “Electrospinning of polymeric nanofibers for tissue engineering applications: A review”, Tissue Eng., 12:1197-1211 (2006).
[32]D. Lin, W. Pan, H. Wu, “Morphological control of centimeter long aluminum-doped zinc oxide nanofibers prepared by electrospinning”, J. Am. Ceram. Soc., 90:71-76 (2007).
[33]P. J. De Wild and M. J. F. M. Verhaak, “. Catalytic production of hydrogen from methanol”, Catal. Today, 60:3-10 (2000).
[34]T. Valde’s-Soli’s, G. Marba’n, and A. B. Fuertes, “Nanosized catalysts for the production of hydrogen by methanol steam reformin”, Catal. Today, 116: 54-360 (2006).
[35]F. Joensen, Rostrup-Nielsen and J. R, “Conversion of hydrocarbons and alcohols for fuel cells”, J. Power Sources, 105:195-201 (2002).
[36]B. Ho‥hlein, M. Boe, J. Bogild-Hansen, P. Bro‥ckererhoff, G. Colsman, B. Emonts, R. Menzer, and E. Riedel, “.Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer”, J. Power Sources, 61: 143-147 (1996).
[37]L. Ma, B. Gong, T. Tran, Wainwright, and M.S., “Cr2O3 promoted skeletal Cu catalysts for the reactions of methanol steam reforming and water gas shift”, Catal. Today, 63:499-505 (2000).
[38]W. H Cheng, I. Chen, J. S. Liou, and S. S. Lin, “Supported Cu catalysts with yttria-doped ceria for steam reforming of methanol”, Top Catal., 22: 3-4 (2003).
[39]W. S. Chen, F. W. Chang, L. S. Roselin, T. C. Ou, S. C. Lai, “Partial oxidation of methanol over copper catalysts supported on rice husk ash”, J. Mol. Catal. A: Chem., 318: 36-43 (2010).
[40]P. Reuse, A. Renken, K. Haas-Santo, O. Go‥rke, and K. Schubert, “Hydrogen production for fuel cell application in an autothermal micro-channel reactor”, Chem. Eng. J., 101: 133-141 (2004).
[41]R. M. Navarro, M. A. Pena, C. Merino, and J. L. G Fierro, “Production of hydrogen by partial oxidation of methanol over carbon-supported copper catalysts”, Top. Catal., 30/31: 481-486 (2004).
[42]C. Horny, A. Renken and L. Kiwi-Minsker, “Compact string reactor for autothermal hydrogen production”, Catal. Today, 120: 45-53 (2007).
CHAPTER 3
[1]R. Rao, A. Dandekar, R. Baker, T. K. Baker, and M. A. Vannice, “Properties of Copper Chromite Catalysts in Hydrogenation Reactions”, J. Catal., 171: 406-419 (1997).
[2]R. Prasad, “Highly active copper chromite catalyst produced by thermal decomposition of ammoniac copperoxalate chromate”, Mater. Lett., 59: 3945-3949 (2005).
[3]Z. Ma, Z. Xiao, J. A. V. Bokhoven, and C. Liang, “A non-alkoxide sol-gel route to highly active and selective Cu-Cr catalysts for glycerol conversion”, J. Mater. Chem., 20:755-760 (2010).
[4]K. George and S. Sugunan, “Nickel substituted copper chromite spinels: Preparation, characterization and catalytic activity in the oxidation reaction of ethylbenzene.” Catal. Commun., 9:2149-2153 (2008).
[5]S. Barman, Acharya, N.C.P.A., and P. Pramanik, “Kinetics of Reductive Isopropylation of Benzene with Acetone over Nano-Copper Chromite-Loaded H-Mordenite”, .Ind. Eng. Chem. Res., 45: 3481-3487 (2006).
[6]H. Wang, L. Chen, D. Luan, Y. Li, Z. Yan, Y. Zhang, and J. Xing, “A continuous process for the synthesis of homopiperazine catalyzed by Cu-based catalysts”, .React. Kinet. Catal. Lett, 89: 201-208 (2006).
[7]R. Prasad, “Highly active copper chromite catalyst produced by thermal decomposition of ammoniac copper oxalate chromate”, Mater. Lett., 59:3945−3949 (2005).
[8]P. S. Sathiskumar, C. R. Thomas and Giridhar Madras, “Solution Combustion Synthesis of Nanosized Copper Chromite and Its Use as a Burn Rate Modifier in Solid Propellants”, Ind. Eng. Chem. Res., 51:10108-10116 (2012).
[9]E. A. Campos, R. C. L. Dutra, L. C. Rezende, M. F. Diniz, W. M. D. Nawa, and K. Iha, “Performance evaluation of commercial copper chromites as burning rate catalyst for solid propellants”, J. Aerosol. Sci., 2:323-330 (2010).
[10]T. Valdes-Solis, G. Marban and A. B. Fuertes, “Nanosized catalysts for the production of hydrogen by methanol steam reforming”, Catal. Today, 116:354-360 (2006).
[11]S. Boumaza, A. Auroux, S. Bennici, A. Boudjemaa, M. Trari, A. Bouguelia, and R. Bouarab, “Water gas shift reaction over the CuB2O4 spinel catalysts”, React. Kinet. Catal. Lett., 100:145-151 (2010).
[12]D. M. Ginosar, H. W. Rollins, L. M. Petkovic, K. C. Burch, M. J. Rush, “High-temperature sulfuric acid decomposition over complex metal oxide catalysts. ”, Int. J. Hydrogen Energ., 34: 4065 – 4073 (2009).
[13]T. P. Maniecki, P. Mierczynski, W. Maniukiewicz, K. Bawolak, D. Gebauer, W. Jozwiak, “Bimetallic Au-Cu, Ag-Cu/CrAl3O6 Catalysts for Methanol Synthesis.”, Catal. Lett., 130: 481-488 (2009).
[14]A. Pattiya, J.O. Titiloye, A.V. Bridgwater, “Fast pyrolysis of cassava rhizome in the presence of catalysts.”, J. Anal. Appl. Pyrolysis, 81: 72-79 (2008).
[15]B. M. Latha, V. S. adasivam, and B. Sivasankar, “A highly selective synthesis of pyrazine from ethylenediamine on copper oxide/copper chromite catalysts.”, Catal. Commun., 8: 1070-1073 (2007).
[16]R. Hubaut, “Study of the Competitive Reactions between α-β-Unsaturated Aldehyde and Allylic Alcohol on a Copper Chromite Catalyst.”, React. Kinet. Catalo Left., 46: 25-32 (1992).
[17]Z. Li and M. Flytzani-Stephanopoulos, “Cu-Cr-O and Cu-Ce-O Regenerable Oxide Sorbents for Hot Gas Desulfurization.”, Ind. Eng. Chem. Res., 36:187-196 (1997)
[18]W. Xiong and G. M. Kale, “High-selectivity mixedpotential NO2 sensor incorporating Au and CuO + CuCr2O4 electrode couple”, Sens. Actuators, B, 119: 409- 414 (2006).
[19]D. Li, X. Fang, W. Dong, Z. Deng, R. Tao, S. Zhou, J. Wang, T. Wang, Y. Zhao, and X. Zhu, “Magnetic and electrical properties of p-type Mn-doped CuCrO2 Semiconductors”, J. Phys. D: Appl. Phys., 42: 055009 ( 2009).
[20]H. Cui, M. Zayat, and D. Levy, “Sol-Gel synthesis of nanoscaled spinels using sropylene oxide as a gelation agent”, J. Sol-Gel Sci. Technol., 35: 175-181 (2005).
[21]Q. Geng, X. Zhao, X. Gao, S. Yang, and G. Liu, “Low-temperature combustion synthesis of CuCr2O4 spinel powder for spectrally selective paints”, J. Sol-Gel. Sci. Technol., 61:281-288 (2012).
[22]B. Delmon, “Preparation of heterogeneous catalysts”, J. Therm. Anal. Calorim., 90:49-65 (2007).
[23]A. M. Kawamoto, L. C. Pardini and L. C. Rezende, “Synthesis of copper chromite catalyst.” Aerosol Sci. Technol., 8:591-598 (2004).
[24]R. W. Armstrong, B. Baschung and D. W. Booth, “Enhanced propellant combustion with nanoparticles”, Nano. Lett., 3: 253-255 (2003).
[25]K. C. Patil, S. T. Aruna, S. Ekambaram, “Combustion synthesis. Combust”, Sci. Technol., 138: 279- 85 (1998).
[26]K. C .Patil, S. T. Aruna, T. Mimani, “Combustion synthesis: an update”, Curr. Opin. Solid State Mater. Sci., 6: 507-512 (2002).
[27]C. Y. Shiau, Y. R Lee, “Characterization and dehydrogenation activity of Cr-added electroless plated copper catalyst.”, Appl. Catal..A: Gen,. 220: 173-180 (2001).
[28]B. J. Liawa, Y. Z. Chen, “Catalysis of ultrafine CuB catalyst for hydrogenation of olefinic and carbonyl groups”,. Appl. Catal. A: Gen. 196: 199-207 (2000).
[29]J. Yan, L. Zhang, H. Yang, Y. Tang, Z. Lu, S. Guo, and M. Yao, “CuCr2O4/TiO2 heterojunction for photocatalytic H2 evolution under simulated sunlight irradiation”, Sol. Energy Mater. Sol. Cells., 83:1534-1539 (2009).
[30]S. Boumaza, R. Bouarab, M. Trari, and A. Bouguelia, “Hydrogen photo-evolution over the spinel CuCr2O4”, Energy Convers. Manage., 50: 62-68 (2009).
CHAPTER 4
[1]R. Nagarajan, A. D. Draeseke, A. W. Sleight, and J. Tate, “p-type conductivity in CuCr1−xMgxO2 films and powders”, J. Appl. Phys., 8:8022–8025 (2001).
[2]T. W. Chiu, K. Tonooka, and N. Kikuchi, “Fabrication of Transparent CuCrO2:Mg/ZnO p-n Junctions Prepared by Pulsed Laser Deposition on Glass Substrate,” Vacuum, 83:614-617 (2009).
[3]T. W. Chiu, S. W. Tsai, Y. P. Wang, and K. H. Hsu, “Preparation of p-type conductive transparent CuCrO2: Mg thin films by chemical solution deposition with two-step annealing”, Ceram. Int., 38: S673-S676 (2012).
[4]S. Saadi, A. Bouguelia and M. Trari, “Photocatalytic hydrogen evolution over CuCrO2”, Sol. Energy, 80:272–280 (2006).
[5]W. Ketir, A. Bouguelia and M. Trari, “Visible Light Induced NO2− Removal Over CuCrO2 Catalyst”, Water Air Soil Pollut., 199:115–122 (2009).
[6]S. Kameoka, M. Okada and A.P. Tsai, “Preparation of a Novel Copper Catalyst in Terms of the Immiscible Interaction Between Copper and Chromium”, Catal. Lett., 120:252–256 (2008).
[7]S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Tao, G. Meng, T. Wang, “Room temperature ozone sensing properties of p-type CuCrO2nanocrystals”, Sens. Actuators B, 143: 119–123 (2009).
[8]K. Hayashi, K. Sato, T. Nozaki and T. Kajitan, “Effect of Doping on Thermoelectric Properties of Delafossite-Type Oxide CuCrO2”, Jpn. J. Appl. Phys., 47:59–63 (2008).
[9]K. T. Jacob, G. M. Kale, and G. N. K. Iyengar, “Oxygen potentials, Gibbs'' energies and phase relations in the Cu-Cr-O system”, J. Mater. Sci., 21:2753–2758 (1986).
[10]S. H. Lim, S. Desu, and A.C. Rastogi, “Chemical spray pyrolysis deposition and characterization of p-type CuCr1-xMgxO2 transparent oxide semiconductor thin films”, J. Phys. Chem. Solids, 69:2047–2056 (2008).
[11]S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Tao, G. Meng, T. Wang, and X. Zhu, “Hydrothermal synthesis and characterization of CuCrO2 laminar nanocrystals”, J.Cryst. Growth, 310:5375–5379 (2008).
[12]W. Li and H. Cheng, “Synthesis and characterization of Cu-Cr-O nanocomposites”, J. Cent. South Univ. Technol., 14:291–295 (2007).
[13]J. Shu, X. Zhu and T. Yi, “CuCrO2 as anode material for lithium ion batteries”, Electrochim. Acta, 54:2795–2799 (2009).
[14]T. W. Chiu, B. S. Yu, Y. R. Wang, K. T. Chen, and Y. T. Lin, “Synthesis of nanosized CuCrO2 porous powders via a self-combustion glycine nitrate process”, J. Alloys Compd., 509:2933-2935 (2011).