跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 23:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡柏瑋
研究生(外文):Po-Wei Tsai
論文名稱:同排聚丙烯/奈米銅線之奈米複合材料
論文名稱(外文):Isotactic Polypropylene/Copper Nanowires Nanocomposites
指導教授:王賢達王賢達引用關係
指導教授(外文):Hsin-Ta Wang
口試委員:陳聯泰
口試日期:2014-07-24
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:54
中文關鍵詞:導電複合材料奈米銅線化學還原同排聚丙烯導電閥值濃度
外文關鍵詞:isotactic polypropylenecopper nanowireschemical reductionconductive compositesconductive threshold concentration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
導電性高分子複合材料具有輕量化、耐腐蝕及優異的加工性,因此成為光、電、磁等特性應用研究之重點。本研究之目的是發展具導電性的同排聚丙烯/奈米銅線奈米複合材料,備製時以氯化銅為前驅物、十六烷基胺(HDA)為保護劑及葡萄糖為還原劑,採用化學還原法合成奈米銅線,應用紫外光/可見光譜儀和掃描式電子顯微鏡分析純化後奈米銅線之可見光吸收峰值和纖維形態,再以溶液混摻法製備同排聚丙烯/奈米銅線複合材料,應用熱示差掃描卡量計、掃描式電子顯微鏡、X光繞射儀和高電阻測試儀進行分析,再以所測得體積電阻率代入Power law equation計算出複合材料之導電閥值濃度。本研究製備之最佳奈米銅線數據之直徑為66±16 nm 和長度為32±12μm,添加1.25 vol%奈米銅線之同排聚丙烯/奈米銅線複合材料可使體積電阻率從5.44 x 10^14 Ω‧cm降低到4.03 x 10^6 Ω‧cm透過Power law equation: ρ = ρo ( V – Vc )^(-t)計算導電閥值濃度(Vc)為0.237 vol%。本研究製備之奈米銅線其直徑小於100 nm,符合一維奈米材料規格,且同排聚丙烯/奈米銅線複合材料之表面電阻率為2.70 x 10^8 Ω/sq,適合靜電消散型複合材料(電阻範圍為10^5-10^9 Ω/sq)之應用。

In recent years, synthesis of copper nanowires has been attracting many attentions because of their high cost/performance ratio. Polymer composites possessed the advantages of light weight, corrosion resistance and processability while preserving conductive. The object of this study is to investigate the electrical properties of isotactic polypropylene/copper nanowires (i-PP/CuNWs). CuNWs were prepared by chemical reduction of CuCl2 and using the hexadecylamine (HDA) as a capping agent. Conductive i-PP/CuNWs composites were prepared by solution blending. The light absorbance and the morphology of CuNWs were characterized by UV-visible spectrophotometry and SEM. To find the percolation threshold concentration, the fit of the electrical resistivity data with the power law equation: ρ = ρo (V – Vc)^(-t) based on the percolation theory was used. The diameters of the copper nanowires are between 50 to 100 nm which can be seen as 1-D nanomaterials. A low percolation threshold value of 0.237 vol% for i-PP/CuNWs composites were obtained.

目錄

摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 viii
表目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 奈米材料介紹 3
2.2 奈米材料類別 3
2.2.1 奈米材料結構 4
2.2.1.1 零維奈米材料 4
2.2.1.2 一維奈米材料 4
2.2.1.3 二維奈米材料 5
2.2.1.4 三維奈米材料 5
2.2.2 奈米材料合成方法 6
2.2.2.1 物理合成方法 6
2.2.2.2 化學合成方法 6
2.3 奈米銅線 6
2.3.1 奈米銅線性質 7
2.3.2 奈米銅線合成 7
2.3.2.1 銅前驅物與pH值關係 8
2.3.2.2 保護劑 8
2.3.2.3 還原方法與還原劑 8
2.3.2.4.1化學還原法 10
2.3.2.4.2 電化學沉積法 10
2.3.2.4.3 水熱還原法 11
2.3.2.4.4 同步輻射X光還原法 11
2.4 奈米銅線複合材料應用 12
2.4.1 聚苯乙烯/奈米銅線 12
2.4.2 聚對苯二甲酸乙二酯/奈米銅線 13
2.4.3 聚丙烯/奈米銅線 14
2.5導電特性之奈米銅線複合材料 14
2.5.1 導電閥值理論 14
2.5.2 導電閥值濃度計算 15
2.5.3 導電閥值與L/D比之關係 16
第三章 實驗材料及方法 17
3.1 實驗藥品 17
3.2 實驗器材 18
3.3 實驗架構 19
3.4 實驗流程 20
3.4.1 奈米銅線之製備與清洗 20
3.4.2 同排聚丙烯/奈米銅線複合材料之製備 20
3.5 實驗分析 22
3.5.1 奈米銅線之紫外光/可見光光譜檢測 22
3.5.2 奈米銅線之OM觀察及Image J量測長度 22
3.5.3 奈米銅線之SEM觀察 23
3.5.4 奈米銅線/聚丙烯之偏光顯微鏡觀察 24
3.5.5 同排聚丙烯/奈米銅線複合材料之SEM觀察 24
3.5.6 同排聚丙烯/奈米銅線複合材料之XRD檢測 24
3.5.7 同排聚丙烯/奈米銅線複合材料之DSC測量 25
3.5.8 同排聚丙烯/奈米銅線複合材料之體積電阻率 25
第四章 結果與討論 26
4.1 合成奈米銅線之探討與分析 26
4.1.1 奈米銅溶液之UV-Visible鑑定 26
4.1.2 預熱攪拌對合成奈米銅線影響 27
4.1.3 酸鹼值對合成奈米銅線之影響 28
4.1.4 保護劑HDA含量對合成奈米銅線之形態影響 29
4.1.5 奈米銅線之可見光吸收波長與直徑關係 32
4.1.6 批次量放大效應對合成奈米銅線產率影響 33
4.1.7 保護劑的選擇對合成奈米銅之形態影響 34
4.1.8 溶劑對奈米銅線之分散影響 35
4.1.9 奈米銅線/界面活性劑(PEG-7)/water系統之相圖 36
4.2 同排聚丙烯/奈米銅線之複合材料鑑定與分析 38
4.2.1 奈米銅線誘導同排聚丙烯穿晶 38
4.2.2 掃描式電子顯微鏡(SEM)觀察 39
4.2.3 熱示差掃描卡量計 (DSC)分析 41
4.2.4 奈米銅線之X光繞射儀(XRD)分析 42
4.2.5 體積電阻率測試 43
4.2.6 導電閥值濃度計算分析 44
第五章 結論 46
參考文獻 48



參考文獻
1.Huizhang Guo, Na Lin, Yuanzhi Chen, Zhenwei Wang, Qingshui Xie, Tongchang Zheng, Na Gao, Shuping Li, Junyong Kang and Duanjun Cai, "Copper nanowires as fully transparent conductive electrodes.", Scientific Reports, vol. 3, no. 2323, 2013, pp. 1-8
2.Aaron Rathmell and Benjamin Wiley, "The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. ", Advanced Materials, vol. 29, no.41, 2011, pp. 4798-4803.
3.Melinda Mohl, Peter Pusztai, Akos Kukovecz, Zoltan Konya, Jarmo Kukkola, Krisztian Kordas, Robert Vajtai and Pulickel M Ajayan, "Low-temperature large-scale synthesis and electrical testing of ultralong copper nanowires.", Langmuir, vol. 26, no. 21, 2010, pp. 16496-16502.
4.Yuchan Zhang, Liang Su, Dan Manuzzi, Honorio Valdés Espinosa de los Monteros, Wenzhao Jia, Danqun Huo, Changjun Hou and Yu Lei, "Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires.", Biosensors and Bioelectronics, vol. 31, no. 1, 2012, pp. 426-432.
5.Christoph Sachse, Nelli Weiß, Nikolai Gaponik, Lars Müller‐Meskamp, Alexander Eychmüller and Karl Leo, "ITO‐free, small‐molecule organic solar cells on spray‐coated copper‐nanowire‐based transparent electrodes.", Advanced Energy Materials, vol. 4, no. 2, 2013, pp. 737-743.
6.Ming-Yu Yen, Ching-Wen Chiu, Chih-Hao Hsia, Du-Rong Chen, Ji-Jung Kai, Chi-Young Lee and Hsin-Tien Chiu, "Synthesis of cable‐like copper nanowires.", Advanced Materials, vol. 15, no. 13, 2003, pp. 235-237.


7.Yan Li, "Solution based synthesis of copper nanowire/polymer composites and their electrical properties.", Master Thesis, University of Calgary, Canada, 2014.
8.Herbert Gleiter, "Nanostructured materials: basic concepts and microstructure.", Acta Materialia, vol. 48, no. 1, 2000, pp. 1-29.
9.Valeriy V Skorokhod and Andrey V Ragulya, "Physicochemical kinetics in nanostructured systems.", Akademperiodika, 2001, pp. 180.
10.楊素華和蔡銘維,「一維奈米技術」,科學發展,第四百七十一期,2012,第62-71頁。
11.Jitendra N Tiwari, Rajanish N Tiwari and Kwang S Kim, "Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices.", Progress in Materials Science, vol. 57, no. 4, 2012, pp. 724-803.
12.Baorui Jia, Mingli Qin, Zili Zhang, Aimin Chu, Lin Zhang, Ye Liu and Xuanhui Qu, "The influence of reagents on the preparation of Cu nanowires by tetradecylamine-assisted hydrothermal method.", Journal of Materials Science, vol. 48, no. 11, 2013, pp. 4073-4080.
13.Young-Sik Cho and Young-Duk Huh, "Synthesis of ultralong copper nanowires by reduction of copper-amine complexes.", Materials Letters, vol. 63, no. 2, 2009, pp. 227-229.
14.Michael Faraday, "The Bakerian lecture: experimental relations of gold (and other metals) to light.", Philosophical Transactions of the Royal Society of London, 1857, pp. 145-181.
15.Mingshang Jin, Guannan He, Hui Zhang, Jie Zeng, Zhaoxiong Xie and Younan Xia, "Shape‐controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent.", Angewandte Chemie International Edition, vol. 50, no. 45, 2011, pp. 10560-10564.
16.Aaron R Rathmell, Stephen M Bergin, Yi‐Lei Hua, Zhi‐Yuan Li and Benjamin J Wiley, "The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films.", Advanced Materials, vol. 22, no. 32, 2010, pp. 3558-3563.
17.Zhaoping Liu, You Yang, Jianbo Liang, Zhaokang Hu, Shu Li, Sheng Peng and Yitai Qian, "Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process.", The Journal of Physical Chemistry B, vol. 107, no. 46, 2003, pp. 12658-12661.
18.Shouling Wang, Yin Cheng, Ranran Wang, Jing Sun and Lian Gao, "Highly thermal conductive copper nanowire composites with ultra-low loading: toward applications as thermal interface materials.", ACS Applied Materials & Interfaces, vol. 6, no. 9, 2014, pp. 6481–6486.
19.Bruce Zoecklein, "Carbohydrates-reducing sugars", Production Wine Analysis, 1990, pp. 114-128.
20.Hardev Singh Virk, "Fabrication and characterization of copper nanowires.", Intech Open Science, 2011, pp. 456-468.
21.Céline Mayousse, Caroline Celle, Alexandre Carella and Jean-Pierre Simonato , "Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT: PSS.", Nano Research, vol. 7, no. 3, 2013, pp. 1-10.
22.Yu Shi, Hong Li, Liquan Chen and Xuejie Huang, "Obtaining ultra-long copper nanowires via a hydrothermal process.", Science and Technology of Advanced Materials, vol. 6, no. 7, 2005, pp. 761-765.

23.Jingwei Huang, Zhengping Dong, Yingdong Li, Jing Li, Jia Wang, Haidong Yang, Shuwen Li, Shujing Guo, Jun Jin and Rong Li, "High performance non-enzymatic glucose biosensor based on copper nanowires–carbon nanotubes hybrid for intracellular glucose study.", Sensors and Actuators B: Chemical, vol. 182, 2013, pp. 618-624.
24.Weili Hu, Ranran Wang, Yunfeng Lu and Qibing Pei, "An elastomeric transparent composite electrode based on copper nanowires and polyurethane.", Journal of Materials Chemistry, vol. 2, no. 7, 2014, pp. 1298-1305.
25.Genaro A Gelves, Mohammed H Al-Saleh and Uttandaraman Sundararaj, "Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation.", Journal of Materials Chemistry, vol. 21, no. 3, 2011, pp. 829-836.
26.Shengtai Zhou, Yang Chen, Huawei Zou and Mei Liang, "Thermally conductive composites obtained by flake graphite filling immiscible polyamide 6/polycarbonate blends.", Thermochimica Acta, vol. 56, no. 6, 2013, pp. 84-91.
27.Mool C. Gupta Yonglai Yang, Kenneth L. Dudley and Roland W. Lawrence, "A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites.", Nanoscience Nanotechnology, vol. 5, no. 6, 2005, pp. 927–931.
28.Yonglai Yang, Mool C Gupta, Kenneth L Dudley and Roland W Lawrence, "Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding.", Nanoletters, vol. 5, no. 11, 2005, pp. 2131-2134.


29.Narayan Chandra Das and Spandan Maiti, "Electromagnetic interference shielding of carbon nanotube/ethylene vinyl acetate composites.", Journal of Materials Science, vol. 43, no. 6, 2008, pp. 1920-1925.
30.Yi Huang, Ning Li, Yanfeng Ma, Feng Du, Feifei Li, Xiaobo He, Xiao Lin, Hongjun Gao and Yongsheng Chen, "The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites.", Carbon, vol. 46, no. 8, 2007, pp. 1614-1621.
31.Zunfeng Liu, Gang Bai, Yi Huang, Yanfeng Ma, Feng Du, Feifei Li, Tianying Guo and Yongsheng Chen, "Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites.", Carbon, vol. 45, no. 4, 2007. pp. 821-827.
32.Aline Bruna da Silva, Mohammad Arjmand, Uttandaraman Sundararaj and Rosario Elida Suman Bretas, "Novel composites of copper nanowire/PVDF with superior dielectric properties.", Polymer, vol. 55, no. 1, 2014, pp. 226-234.
33.Genaro A Gelves, Bin Lin, Uttandaraman Sundararaj and Joel A Haber, "Low electrical percolation threshold of silver and copper nanowires in polystyrene composites.", Advanced Functional Materials, vol. 16, no. 18, 2006, pp. 2423-2430.
34.Mohammad Arjmand, Mehdi Mahmoodi, Simon Park and Uttandaraman Sundararaj, "An innovative method to reduce the energy loss of conductive filler/polymer composites for charge storage applications.", Composites Science and Technology, vol. 78, 2013, pp. 24-29.


35.Christoph Müller, "Conductivity and diffusion near the percolation threshold.", Journal of Physics A: Mathematical and Theoretical, vol. 22, no. 19, 1989, pp. 4189-4199.
36.Frank Lux, "Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials.", Journal of Materials Science, vol. 28, no. 2, 1993, pp. 285-301.
37.Joachim Glatz-Reichenbach, "Feature article conducting polymer composites.", Journal of Electroceramics, vol. 3, no. 4, 1999, pp. 329-346.
38.Mark Weber and Musa R Kamal, "Estimation of the volume resistivity of electrically conductive composites.", Polymer Composites, vol. 18, no. 6, 1997, pp. 711-725.
39.Ioana Finegan and Gary Tibbetts, "Electrical conductivity of vapor-grown carbon fiber/thermoplastic composites.", Journal of Materials Research, vol. 16, no. 6, 2001, pp. 1668-1674.
40.Sergey A Gordeyev, Francisco J Macedo, Van Hattum and Carlos A Bernardo, "Transport properties of polymer-vapour grown carbon fibre composites.", Physica B: Condensed Matter, vol. 279, no. 1, 2000, pp. 33-36.
41.Mateusz Bryning, Mohammad Islam, James Kikkawa and Arjun Yodh, "Very low conductivity threshold in bulk isotropic single‐walled carbon nanotube–epoxy composites.", Advanced Materials, vol. 17, no. 9, 2005, pp. 1186-1191.
42.Jing Li, Peng Cheng Ma, Wing Sze Chow, Chi Kai To, Ben Zhong Tang and Jang Kyo Kim, "Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes." Advanced Functional Materials, vol. 17, no. 16, 2007, pp. 3207-3215.
43.Brigitte Vigolo, Alain Pénicaud, Claude Coulon, Cédric Sauder, René Pailler, Catherine Journet, Patrick Bernier and Philippe Poulin, "Macroscopic fibers and ribbons of oriented carbon nanotubes.", Science, vol. 290, no. 5495, 2000, pp. 1331-1334.
44.Gisela Pompe and Edith Mäder, "Experimental detection of a transcrystalline interphase in glass-fibre/polypropylene composites.", Composites Science and Technology, vol. 60, no. 11, 2000, pp. 2159-2167.
45.Anand Tiwari, Ajay Mishra, Shivani Mishra, Alex Kuvarega and Bhekie VMamba, "Stabilisation of silver and copper nanoparticles in a chemically modified chitosan matrix.", Carbohydrate Polymers, vol. 92, no. 2, 2013, pp. 1402-1407.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top