跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/08 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂建霖
研究生(外文):Chien-Lin Lu
論文名稱:應用量子二進制粒子群演算法求解智慧電網復電策略
論文名稱(外文):Application of Quantum Binary Particle Swarm Optimization to Service Restoration of Priority Customers in Smart Grid
指導教授:曹大鵬曹大鵬引用關係
指導教授(外文):Ta-Peng Tsao
口試委員:周仁祥謝冠群歐庭嘉林惠民
口試委員(外文):Jen-Hsiang ChouGuan-Chyun HsiehTing-Chia OuWhei-Min Lin
口試日期:2014-06-24
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:98
中文關鍵詞:量子二進制粒子群演算法復電策略
外文關鍵詞:Quantum Binary Particle Swarm OptimizationAlgorithmService Restoration
相關次數:
  • 被引用被引用:1
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:1
本論文提出量子二進制粒子群演算法,應用於協助智慧電網重要客戶之復電轉供規劃,其研究重點在於操作開關之動作狀態資訊,並配合負載優先性之選擇條件,整合建立出復電策略之問題數學模型,再輔以量子二進制粒子群演算法,以有效計算最佳轉供路徑,同時確保停電區域最小化及操作開關次數最少。此量子二進制粒子群演算法之提出,乃根據二進制粒子群演算法並結合量子計算之概念,藉由量子位元和狀態的疊加,取代了原本粒子群速度更新之過程,進而改善粒子群會過早收斂於區域解的問題,此外,此法亦結合量子理論與粒子群理論的優點,適合解決組合和最佳化的問題。為驗證此演算法於重要客戶之復電策略效能,本論文與其他演算法進行分析比較,並由不同系統測試結果可得知,此量子二進制粒子群演算法應用於智慧電網重要客戶之復電策略擬定上,確實有較佳的計算和收斂效能,並已兼具延伸應用至電力系統相關議題之發展潛力。

In this thesis, the Quantum Binary Particle Swarm Optimization (QBPSO) is introduced and applied to service restoration of priority customers in the smart grid. This research is emphasized on movement statement data in operating switch and condition added with load priority. The mathematic model is integrately established for restoration strategy issue with QBPSO combined, in order to effectively indicate the optimal restoration path and simultaneously ensure both the area of outrange and the times of switching minimized. As to this proposed QBPSO, it is based on Binary Particle Swarm Optimization and integrated with the concept of quantum computation. Through quantum bit and statement superimposed, instead of the process of original particle method updated, the problem of premature convergence can be improved. Taking advantages of quantum and particle theory, this can properly meet the satisfaction of combination and the optimization. To verify the efficiency of important client''s restoration strategy, this algorithm is compared with others and analyzed the difference. From the testing results in the different system, this QBPSO does present remarkable ability in computation and convergence, especially for essential client''s restoration strategy in smart grid. It also illustrates the development potential of application extended to power system and relative issues.

摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 論文架構 5
第二章 問題描述 6
2.1 前言 6
2.2 輸配電系統之介紹 7
2.2.1輸配電系統之架構 7
2.2.2輸配電系統之狀態與轉換 9
2.2.3輸配電系統之復電 12
2.3 電力潮流分析 15
2.3.1電力潮流方程式 16
2.3.2求解電力潮流的方法 19
2.3.3牛頓-拉福森法求解電力潮流 20
第三章 演算法理論之介紹 25
3.1 基因演算法 25
3.1.1基因演算法之基本概念 25
3.1.2基因演算法執行步驟 27
3.2 粒子群演算法 34
3.2.1粒子群演算法之基本概念 34
3.2.2粒子群演算法執行步驟 39
3.3 二進制粒子群演算法 41
3.3.1二進制粒子群演算法之基本概念 41
3.3.2二進制粒子群演算法執行步驟 42
3.4 量子演算法 44
3.4.1量子演算法之基本概念 44
3.4.2量子演算法的步驟 46
3.5 量子二進制粒子群演算法 51
3.5.1量子二進制粒子群演算法之基本概念 51
3.5.2量子二進制粒子群演算法執行步驟 52
第四章 復電策略之數學模型 55
4.1 復電策略目標函數 55
4.2 復電策略限制條件 57
第五章 模擬結果與討論 59
5.1 測試系統一 59
5.1.1案例1-1 62
5.1.2案例1-2 65
5.1.3案例1-3 68
5.2 測試系統二 71
5.2.1案例2-1 75
5.2.2案例2-2 80
5.2.3案例2-3 85
5.3 測試系統三 90
第六章 結論與未來研究方向 93
6.1 結論 93
6.2 未來研究方向 94
參考文獻 95

[1]F. Katiraei and M.R. Iravani, “Power management strategies for a microgrid with multiple distributed generation units,” IEEE Trans. on Power Systems, Vol. 21, No. 4, 2006, pp. 1821-1831.
[2]D. Shirmohammadi and H. E.Homg, “Reconfiguration of Electric Distribution Networks for Service Line Losses Reduction,” IEEE Transactions on Power Delivery, Vol. 4, No. 2, 1989, pp. 1492-1498.
[3]M. Ribeiro, C. Duque and J. T. Romano, “An Interconnected Type-1 Fuzzy Algorithm for Impulsive Noise Cancellation in Multicarrier-Based Power Line Communication Systems,” IEEE Journal on Selected Areas in Communications, Vol. 24, No. 7, 2006, pp. 1364-1376.
[4]H. C. Kuo and Y. Y. Hsu, “Distribution System Load Estimation and Service Restoration Using A Fuzzy Set Approach,” IEEE Transactions on Power Delivery, Vol. 8, no. 4, 1993, pp. 1950-1957.
[5]J. S. Wu, C. C. Liu, K. L. Liou, and R. F. Chu, “A Petri Net Algorithm for Scheduling of Generic Restoration Actions,” IEEE Transactions on Power System, Vol. 12, no. 1, 1997, pp. 69-76.
[6]W. P. Luan, M. R. Irving and J. S. Daniel, “Genetic Algorithm for Supply Restoration and Optimal Load Shedding in Power System Distribution Networks,” IET Proceedings: Generation, Transmission & Distribution, Vol. 149, No. 2, 2002, pp. 145-151.
[7]Y. Jiang, J. Jiang and Y. Zhang, “A Novel Fuzzy Multiobjective Model Using Adaptive Genetic Algorithm Based on Cloud Theory for Service Restoration of Shipboard Power Systems,” IEEE Transactions on Power Systems, Vol. 27, No. 2, 2012, pp. 612-620.
[8]A. Verma, B. K. Panigrahi and P. R. Bijwe, “Harmony Search Algorithm for Transmission Network Expansion Planning,” IET Proceedings: Generation, Transmission & Distribution, Vol. 4, No. 6, 2011, pp. 663-673.
[9]A. Singh and K. K. Swarnkar, “Power System Restoration Using Particle Swarm Optimization,” International Journal of Computer Applications, Vol. 30, No. 2, 2011, pp. 25-32.
[10]Yun-Won Jeong, Jong-Bae Park, Se-Hwan Jang, Lee, K.Y., ” A New Quantum-Inspired Binary PSO: Application to Unit Commitment Problems for Power Systems,” IEEE Transactions on Power Systems, Vol. 25, 2010, pp. 1486-1495.
[11]Yun-Won Jeong, Jong-Bae Park, Se-Hwan Jang, Lee, K.Y., “A New Quantum-Inspired Binary PSO for Thermal Unit Commitment Problems,” 〖15〗^th International Conference on Intelligent System Applications to Power Systems, 2009, pp. 1-6.
[12]Xiaoshan Wu, Buhan Zhang, Kui Wang, Junfang Li, Yao Duan, “A Quantum-inspired Binary PSO algorithm for unit commitment with wind farms considering emission reduction,” Innovative Smart Grid Technologies - Asia (ISGT Asia), 2012, pp. 1-6.
[13]M. M. Adibi and D. P. Milanicz, “Estimating Restoration Duration,” IEEE Transactions on Power Systems, Vol. 14, No. 4, 1999, pp. 1493-1498.
[14]台灣電力公司網站,台電系統介紹,
http://www.taipower.com.tw/content/new_info/new_info-c21.aspx?LinkID=12
[15]A. L. Morelato and A. Monticelli, “Heuristic Search Approach to Distribution System Restoration,” IEEE Transactions on Power Delivery, Vol. 4, No. 4, 1989, pp. 2235-2241.
[16]H. J. Lee, Y. M. Park, “A Restoration Aid Expert System for Distribution Substations,” IEEE Transactions on Power Delivery, Vol. 11, No. 4, 1996, pp. 1765-1769.
[17]Ting-Chia Ou, Ta-Peng Tsao, Whei-Min Lin, Chih-Ming Hong, Kai-Hung Lu, and Chia-Sheng Tu, “A novel Power Flow Analysis for Microgrid Distribution System,” in Proc. 8th IEEE Conference on Industrial Electronics and Applications, Melbourne, Australia, June 2013, pp. 1550-1555.
[18]歐庭嘉,林增輝,洪志明,曹大鵬,「微電網分散式電力潮流之研究」,中華民國第三十三屆電力工程研討會,台北科技大學,2012,pp. 277-281。
[19]陳在相、吳瑞南、張宏展譯,電力系統分析,台北:東華圖書有限公司, 2000。
[20]Hadi Saadat, Power System Analysis, BostonWCB: McGraw-Hill, 2009.
[21]張淯詠,應用二進制粒子群演算法求解最佳化短期火力機組排程,碩士論文,國立臺北科技大學,台北,2013。
[22]Holland, John H., Adaptation in natural and artificial systems, University of Michigan Press, 1975.
[23]蘇木春、張孝德編,類神經網路、模糊系統以及基因演算法則,台北:全華科技圖書,2004。
[24]劉律伸,應用量子基因演算法求解最佳化短期火力機組排程,碩士論文,國立臺北科技大學,台北,2012。
[25]K. F. Man, K.S. Tang, and S. Kwong, Genetic Algorithms: Conceptsand Designs. London, U.K.: Springer-Verlag, 1999.
[26]廖國清,最佳演算法應用於負載預測及機組排程問題,博士論文,國立中山 大學,高雄,2005。
[27]Kennedy, James, Eberhart and Russell, “Neural Networks: Particle Swarm Optimization,” IEEE International Conference , Vol.27, 1995, pp. 1942-1948.
[28]陳柏育,二進制粒子群演算法應用於配電系統大規模停電之負載轉供決策之研究,碩士論文,國立高雄應用科技大學,高雄,2008。
[29]柯政昕,整合基因演算法與二進制粒子群演算法於無線射頻辨識網路排程問題之研究,碩士論文,國立臺北科技大學,台北,2009。
[30]沈銘倫,應用模擬退火法與離散粒子群演算法在排列流程式排列問題之研究,碩士論文,國立臺北科技大學,台北,2009。
[31]林芳君,應用粒子群最佳化於群及分析以縮短SMT換線時間以研華科技為例,碩士論文,國立臺北科技大學,台北,2007。
[32]Zhan, Z-H., Zhang, J.,Li, Y and Chung, H.S-H., “Adaptive Particle Swarm Optimization,” IEEE Transactions on Systems, Man, and Cybernetics. 2009, 39 (6): 1362–1381.
[33]Kennedy, James, Eberhart and Russell, “A Discrete Binary Version of the Particle Swarm Algorithm,” IEEE International Conference on Systems, Man, and Cybernetics, Vol.5, 1997, pp. 4104-4108.
[34]李柏彥,應用量子蟻拓演算法求解包含碳交易之短期火力機組排程,碩士論文,國立臺北科技大學,台北,2013。
[35]林意祥,應用量子基因演算法求解輸電系統最佳化無效功率調度,碩士論文,國立臺北科技大學,台北,2013。
[36]陳榮靜、林明賢,「應用量子基因演算法求解無界限背包問題」,第二十屆國際資訊管理學術研討會,2009,第996-1005頁。
[37]Y. Tian, J. Xin, Z. du, T. Lin and J. Cao, “On the Strategy of Distribution System Service Restoration Considering Distributed Generation,” IEEE International Conference on Electricity Distribution, China, 2010, pp. 1-5.
[38]黃世杰、蘇偉府、歐庭嘉、劉憲宗、廖昭明、林峻偉,「應用改良型重力搜尋演算法於智慧微電網之重要客戶復電策略研究」,第八屆智慧生活科技研討會,台中,2013,第1083-1089頁。
[39]Mesut E. Baran and Felix F. Wu, “OPTIMAL CAPACITOR PLACEMENT ON RADIAL DISTRIBUTION SYSTEMS,” IEEE Transactions on Power Delivery, Vol. 4, No. 1, 1989, pp. 725-734.
[40]郭熙霖,應用模糊與灰關聯理論進行配電系統之復電策略,碩士論文,國立臺北科技大學,台北,2003。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊