跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/05/31 23:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳建忠
研究生(外文):Jian-Zhong Wu
論文名稱:結合情境資訊與社群之動態時段協同過濾推薦系統
論文名稱(外文):Dynamic Time Periods Collaborative Filtering Recommendation System based on Contextual Information and Social Network
指導教授:段裘慶段裘慶引用關係
指導教授(外文):Chiu-Ching Tuan
口試委員:李財福周立德
口試委員(外文):Tsair-Fwu LeeLi-Der Chou
口試日期:2014-07-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:84
中文關鍵詞:情境資訊社群協同過濾時間動態推薦系統
外文關鍵詞:Contextual InformationCommunityCollaborative FilteringTemporal DynamicsRecommendation System.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
人們的興趣會因為環境的改變,而本身的興趣也跟著改變。我們的志趣常與工作上夥伴或共同學習的朋友具有較高的相似度。個人的喜好通常會受到周遭朋友的興趣影響而有所變化,而與舊朋友間的相似度,很有可能因為時間或距離因素而有所改變。為了結合使用者與好友間動態相似與情境資訊的應用,本論文提出結合使用者社群資料、氣候情境的考量與使用者親密度動態分析,稱為結合情境資訊與社群之動態時段協同過濾推薦系統(DTPCS),篩選範圍內熱門且與使用者感興趣的景點來進行推薦,能減少相似度的計算。並考量在不同氣候情境下使用者需求的變化,探討氣候因素對喜好項目所帶來的影響。以及透過社群網絡的好友群,根據與朋友的打卡資訊來找出與使用者興趣喜好相似之朋友,給予不同的權重值來表示親密程度的不同,作為推薦的依據。最後計算出推薦序列,以Top-10之方式排序出推薦的清單。
根據模擬實驗之結果,本文所提出之DTPCS相較於DIRTD、TPPCF及TACF策略,可有效降低推薦誤差率與推薦計算時間。當行動用戶以平均每小時5 km/hr前進時,DTPCS之推薦誤差率平均優於其它策略約低35%。於推薦計算時間方面,DTPCS平均優於其它策略約少32%;而推薦覆蓋率方面,DTPCS平均優於其它策略約高27%。當以平均每小時50 km/hr前進時,DTPCS之推薦誤差率平均優於其它策略約低37%。於推薦計算時間方面,DTPCS平均優於其它策略約少36%;而推薦覆蓋率方面,DTPCS平均優於其它策略約高25%。依實驗結果顯示DTPCS在行動環境下能提供行動用戶相對穩定的推薦品質。


The people interest will often be changed by the dynamic of environment. We usually have high degree of similarity with partners of work or friends in the same school. Our preference usually be changed by around friend’s interests. The similarity of interest among old friends may change over time or distance. We proposed the Dynamic Time Periods Collaborative Filtering Recommendation System based on Contextual Information and Social Network (DTPCS), combining user community information, contextual information and user dynamic similarity. The system could query all popular Point of Interests (POIs) from the database recommend, it could reduce the computing of similarity. Moreover, we considered the changes of user requirements in different contexts, and explore the impact of contextual factors. Through the Community Network, the friends of similar interests could be found by the check-in information. The different contextual information will give different weight value to be as a basis for recommendation. Finally, the system sort the recommend sequence to be a Top-N recommendation list.
According to the simulation results, it showed that DTPCS we proposed had less recommendation error and system calculation time than DIRTD, TPPCF and TACF. When the mobile user’s velocity is 5 km/hr, in recommend error, DTPCS is less than the others about 35%. In recommend calculation time, DTPCS is less than the others about 32%. In recommend coverage, DTPCS is more than the others about 27%.The velocity is 50 km/hr, in recommend error, DTPCS is less than the others about 37%. In recommend calculation time, DTPCS is less than the others about 36%. In recommend coverage, DTPCS is more than the others about 25%.The experiment results showed that DTPCS was more suitable to be applied in the mobile environment.


中文摘要 i
英文摘要 iii
誌 謝 v
目 錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 研究動機 2
1.2 研究目的 3
1.3 論文架構 4
第二章 文獻探討 5
2.1 社群網路 5
2.2 情境感知 7
2.3 協同過濾推薦系統 8
2.3.1 協同過濾推薦機制 9
2.3.2 協同過濾性能限制 12
2.4 時間動態推薦系統 13
2.4.1 時間衰退函數法 13
2.4.2 區段時間圖形法 16
2.4.3 策略比較表 17
第三章 DTPCS推薦系統 19
3.1 DTPCS推薦系統架構 19
3.2 DTPCS推薦系統之組成 21
3.2.1 預測使用者位置 21
3.2.2 氣候情境感知 23
3.2.3 好友打卡親密度計算 28
3.2.4 社群評價預測 31
3.2.5 DTPCS推薦價值計算 33
3.3 DTPCS演算法 36
第四章 效能模擬與分析 38
4.1 系統模擬環境 38
4.1.1 模擬實驗參數設定 38
4.1.2 模擬實驗環境限制 43
4.2 效能評估因子 44
4.2.1 推薦誤差率 45
4.2.2 推薦計算時間 45
4.2.3 推薦覆蓋率 46
4.3 模擬結果分析與比較 47
4.3.1 氣候情境因子分析 47
4.3.2 推薦誤差率分析 52
4.3.3 推薦計算時間分析 57
4.3.4 推薦覆蓋率分析 62
第五章 結論與未來研究方向 67
5.1 結論 67
5.2 未來研究方向 68
參考文獻 69
附錄 76
A 參數對照表 76
B 中英專有名詞對照表 78
C 模擬系統簡介 81
D 作者簡歷 84


[1]H. Zhang, L. Xu, H. Huang, and S. Gao, "Mining Spatial Association Rules from LBS Anonymity Dataset for Improving Utilization," in Proceedings of the 21st International Conference on Geoinformatics (GEOINFORMATICS), Kaifeng, China, 2013, pp. 1-6.
[2]J. Raper, G. Gartner, H. Karimi, and C. Rizos, "Applications of Location–Based Services: A Selected Review," Journal of Location Based Services, vol. 1, no. 2, 2007, pp. 89-111.
[3]F. Zhu, B. Jin, and J. Zhang, "Towards Spatial Information Services in LBS: A GML-Based Approach," in Proceedings of the 2010 International Conference on Machine Vision and Human-Machine Interface (MVHI 2010), Kaifeng, China, 2010, pp. 588-591.
[4]J. B. Schafer, J. Konstan, and J. Riedl, "Recommender Systems in E-Commerce," in Proceedings of the 1st ACM conference on Electronic Commerce, Denver, Colorado, 1999, pp. 158-166.
[5]G. Gupta and W. C. Lee, "Collaborative Spatial Object Recommendation in Location Based Services," in Proceedings of the 39th International Conference on Parallel Processing Workshops (ICPPW 2010), San Diego, CA, 2010, pp. 24-33.
[6]M. H. Kuo, L. C. Chen, and C. W. Liang, "Building and Evaluating A Location-Based Service Recommendation System with a Preference Adjustment Mechanism," Expert Systems with Applications, vol. 36, no. 2, 2009, pp. 3543-3554.
[7]G. Adomavicius and A. Tuzhilin, "Context-Aware Recommender Systems," Recommender Systems Handbook of Springer Science Business Media, 2011, pp. 217-253.
[8]Y. Zheng, L. Zhang, X. Xie, and W. Y. Ma, "Mining Interesting Locations and Travel Sequences from GPS Trajectories," in Proceedings of the 18th International Conference on World Wide Web, Madrid, Spain, 2009, pp. 791-800.
[9]S. Wei, N. Ye, and Q. Zhang, "Time-Aware Collaborative Filtering for Recommender Systems," Pattern Recognition of Springer Communications in Computer and Information Science, 2012, pp. 663-670.
[10]A. Dutta, F. Vakil, J. C. Chen, M. Tauil, S. Baba, N. Nakajima, and H. Schulzrinne, "Application Layer Mobility Management Scheme for Wireless Internet," in Proceedings of the IEEE International Conference on Third Generation Wireless and Beyond, 2001, pp. 379-385.
[11]M. Kayaalp, T. Ozyer, and S. Ozyer, "A Collaborative and Content Based Event Recommendation System Integrated with Data Collection Scrapers and Services at a Social Networking Site," in Proceedings of the International Conference on Social Network Analysis and Mining (ASONAM''09), 2009, pp. 113-118.
[12]Facebook Overview Statistics, http://www.socialbakers.com/
facebook-overv iew-statistics/, 2014.
[13]Facebook Facts you Need to Know in 2014, http:// www.jeffbullas.com/
2014/02/11/f acebook-facts-need-k now-2014/#cqohys5 osipl1jox.99.
[14]Z. M. Wang and F. Yang, "An Optimized Location-Based Mobile Restaurant Recommend and Navigation System," WSEAS Transactions on Information Science and Applications, vol. 6, no. 5, 2009, pp. 809-818.
[15]Z. Wang, Y. Tan, and M. Zhang, "Graph-Based Recommendation on Social Networks," in Proceedings of the 2010 12th International Conference on Asia-Pacific Web (APWEB 2010), Beijing, China, 2010, pp. 116-122.
[16]I. Konstas, V. Stathopoulos, and J. M. Jose, "On Social Networks and Collaborative Recommendation," in Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Boston, USA, 2009, pp. 195-202.
[17]A. T. Stephen and O. Toubia, "Deriving Value from Social Commerce Networks," Journal of Marketing Research, vol. 47, no. 2, 2010, pp. 215-228.
[18]I. Liccardi, A. Ounnas, R. Pau, E. Massey, P. Kinnunen, S. Lewthwaite, M.-A. Midy, and C. Sarkar, "The Role of Social Networks in Students'' Learning Experiences," ACM SIGCSE Bulletin, vol. 39, no. 4, 2007, pp. 224-237.
[19]A. L. Gonzales and J. T. Hancock, "Mirror, Mirror on My Facebook Wall: Effects of Exposure to Facebook on Self-Esteem," Cyberpsychology, Behavior, and Social Networking, vol. 14, no. 1, 2011, pp. 79-83.
[20]N. B. Ellison, "Social Network Sites: Definition, History, and Scholarship," Journal of Computer‐Mediated Communication, vol. 13, no. 1, 2007, pp. 210-230.
[21]C. Ross, E. S. Orr, M. Sisic, J. M. Arseneault, M. G. Simmering, and R. R. Orr, "Personality and Motivations Associated with Facebook Use," Computers in Human Behavior, vol. 25, no. 2, 2009, pp. 578-586.
[22]T. Correa, A. W. Hinsley, and H. G. De Zuniga, "Who Interacts on the Web?: The Intersection of Users’ Personality and Social Media Use," Computers in Human Behavior, vol. 26, no. 2, 2010, pp. 247-253.
[23]A. H. Yair, and G. Vinitzky, "Social Network Use and Personality," Computers in Human Behavior, vol. 26, no. 6, 2010, pp. 1289-1295.
[24]H. S. Park and S. B. Cho, "Building Mobile Social Network with Semantic Relation Using Bayesian Network-Based Life-Log Mining," in Proceedings of the 2010 IEEE Second International Conference on Social Computing (SocialCom 2010), Minneapolis, MN, 2010, pp. 401-406.
[25]G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles, "Towards a Better Understanding of Context and Context-Awareness," in Proceedings of the 1st International Symposium on Handheld and Ubiquitous Computing, London, UK, 1999, pp. 304-307.
[26]A. K. Dey, "Understanding and Using Context," Personal and Ubiquitous Computing, vol. 5, no. 1, 2001, pp. 4-7.
[27]G. Chen, and D. Kotz, "A Survey of Context-Aware Mobile Computing Research," Dartmouth of Computer Science Technical Report (TR2000-381), Dartmouth College Hanover, NH, USA, 2000.
[28]H. Si, Y. Kawahara, H. Kurasawa, H. Morikawa, and T. Aoyama, "A Context-Aware Collaborative Filtering Algorithm for Real World Oriented Content Delivery Service," in Proceedings of the Ubicomp Metapolis and Urban Life Workshop, Tokyo, Japan, 2005, pp. 331-339.
[29]Y. H. GUO, and G. S. DENG, "Improved Personalized Recommendation Algorithm in Collaborative Filtering," Application Research of Computers, vol. 1, 2008, pp. 39-41.
[30]Q. Liu, E. Chen, H. Xiong, C. H. Ding, and J. Chen, "Enhancing Collaborative Filtering by User Interest Expansion Via Personalized Ranking," IEEE Transactions Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 42, no. 1, 2012, pp. 218-233.
[31]G. Linden, B. Smith, and J. York, "Amazon.Com Recommendations: Item-to-Item Collaborative Filtering," IEEE Internet Computing, vol. 7, no. 1, 2003, pp. 76-80.
[32]J. B. Schafer, J. A. Konstan, and J. Riedl, "E-Commerce Recommendation Applications," Data Mining and Knowledge Discovery, vol. 5, no. 2, 2001, pp. 115-153.
[33]L. H. Li, F. M. Lee, Y. C. Chen, and C. Y. Cheng, "A Multi-Stage Collaborative Filtering Approach for Mobile Recommendation," in Proceedings of the 3rd International Conference on Ubiquitous Information Management and Communication, Suwon, Korea, 2009, pp. 88-97.
[34]X. H. Yu, J. W. Wu, and W. Q. Chen, "A Dynamic Item-Based Weight Collaborative Recommendation Algorithm," in Proceedings of the 2010 International Conference on Internet Technology and Applications, Wuhan, China, 2010, pp. 1-3.
[35]Z. D. Zhao, and M. S. Shang, "User-Based Collaborative-Filtering Recommendation Algorithms on Hadoop," in Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (WKDD''10), Phuket, Thailand, 2010, pp. 478-481.
[36]I. Bartolini, Z. Zhang, and D. Papadias, "Collaborative Filtering with Personalized Skylines," Knowledge and Data Engineering, vol. 23, no. 2, 2011, pp. 190-203.
[37]J. Dawes, "Do Data Characteristics Change According to the Number of Scale Points Used? An Experiment Using 5 Point, 7 Point and 10 Point Scales," International Journal of Market Research, vol. 51, no. 1, 2008, pp. 61-104.
[38]L. T. Weng, Y. Xu, Y. Li, and R. Nayak, "Exploiting Item Taxonomy for Solving Cold-Start Problem in Recommendation Making," in Proceedings of the 20th IEEE International Conference on Tools with Artificial Intelligence (ICTAI''08), Dayton, USA, 2008, pp. 113-120.
[39]J. Liu, P. Dolan, and E. R. Pedersen, "Personalized News Recommendation Based on Click Behavior," in Proceedings of the 15th International Conference on Intelligent User Interfaces, New York, USA, 2010, pp. 31-40.
[40]M. Xiao, and B. Yan, "Collaborative Filtering Recommendation Algorithm Based on Shift of Users'' Preferences," in Proceedings of the 2011 International Conference on Business Management and Electronic Information (BMEI), Guangzhou, China, 2011, pp. 520-523.
[41]P. Wu, C. H. Yeung, W. Liu, C. Jin, and Y. C. Zhang, "Time-Aware Collaborative Filtering with the Piecewise Decay Function," Physics and Society, arXiv:1010.3988, 2010.
[42]C. Xia, X. Jiang, S. Liu, Z. Luo, and Z. Yu, "Dynamic Item-Based Recommendation Algorithm with Time Decay," in Proceedings of the Sixth International Conference on Natural Computation (ICNC 2010), Shandong, China, 2010, pp. 242-247.
[43]Y. Zhang and Y. Liu, "A Collaborative Filtering Algorithm Based on Time Period Partition," in Proceedings of the 3rd International Symposium on Intelligent Information Technology and Security Informatics (IITSI 2010), Jinggangshan, China, 2010, pp. 777-780.
[44]C. L. Zheng, K. R. Hao, and Y. S. Ding, "A Collaborative Filtering Recommendation Algorithm Incorporated with Life Cycle," Advanced Materials Research, vol. 765, 2013, pp. 630-633.
[45]L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and J. Sun, "Temporal Recommendation on Graphs Via Long-and Short-Term Preference Fusion," in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2010, pp. 723-732.
[46]I. Q. Whishaw, D. J. Hines, and D. G. Wallace, "Dead Reckoning (Path Integration) Requires the Hippocampal Formation: Evidence from Spontaneous Exploration and Spatial Learning Tasks in Light (Allothetic) and Dark (Idiothetic) Tests," Behavioural Brain Research, vol. 127, no. 1, 2001, pp. 49-69.
[47]C. C. Tuan, C. F. Hung, and T. C. Kuei, "An Adaptive Location Dependent Collaborative Filtering Recommendation System," in Proceedings of International Conference on Future Network Technologies (ICFN 2011), Qingdao, China, 2011, pp. 27-28.
[48]B. De Carolis, I. Mazzotta, N. Novielli, and V. Silvestri, "Using Common Sense in Providing Personalized Recommendations in the Tourism Domain," in Proceedings of Workshop on Context-Aware Recommender Systems (CARS 2009), New York, USA, 2009, pp. 23-27.
[49]I. Bose, and X. Chen, "A Framework for Context Sensitive Services: A Knowledge Discovery Based Approach," Decision Support Systems, vol. 48, no. 1, 2009, pp. 158-168.
[50]交通部中央氣象局, http://www.cwb.gov.tw/V7/index.htm/, 2014.
[51]WikiGPS. http://www.wikigps.com/, 2014.
[52]臺北市公共運輸處大眾運輸科,"臺北捷運各站旅運量",臺北市政府交通局,2014,3月。
[53]What is Dunbars number?
http://curiosity.di scovery.com/question/what-is-d unbars-number/, 2014.
[54]A Tale of Two Studies: Establishing Google & Bing Click-Through Rates. http://www.slingshotseo.com/resources/white-papers/google-ctr-study/, 2014.
[55]J. Nielsen, Participation Inequality: Encouraging More Users to Contribute, http://www.useit.com/alertbox/participation_inequality.html/, 2014.
[56]C. J. Willmott, and K. Matsuura, "Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (Rmse) in Assessing Average Model Performance," Climate Research, vol. 30, no. 1, 2005, pp. 79-82.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊