跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 10:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李金魁
研究生(外文):Jin-Kwei Lee
論文名稱:混元式綠能空調系統設備應用研究
論文名稱(外文):Application Research of Hybrid Sustainable Energy Air-conditioning System
指導教授:張永宗張永宗引用關係莊嘉琛
口試委員:陳武星李靖男陳源林李文興李達生
口試日期:2014-01-06
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:84
中文關鍵詞:直接硼氫燃料電池直接甲醇燃料電池交錯式功率因數調整吸收式綠能空調
外文關鍵詞:Direct Boron Hydrogen Fuel CellDirect Methanol Fuel CellInterleavedPower Factor CorrectionAbsorptionSustainable Energy Air-conditioning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是因應人文科技發展囿於能源匱乏與環境溫室效應困境時代,為解決能源危機的研究結果,旨在能源危機與環境保護的雙重限制下提出另一種可能的能源應用方案,期以開發出一種在傳統能源用罄之後能取代礦產能源的新的環保能源,以確保人類文明能永續發展。
研究內涵是結合燃料電池、吸收式空調系統、變頻式冷氣共組成一套善用一次能源的發電與空調混元式系統,其方法是採用氫氣能源來產生電力,應用再生能源製造空調,開發高效能的電源轉換器。如此一來可以克服傳統發電對礦產能源的依賴與環境破壞瓶頸;二來可以提升目前使用二次能源之機械式空調的整體效率以減少既有能源的損耗,以致減少炭的排放達到維護環境的目標。
研究結果顯示以氫氣為發電原料的燃料電池發電,其發電效率可超過50%,將燃料電池之排放熱能驅動吸收式空調系統,可提升空調效率50%以上,並可促使燃料電池的整體能源使用效率超過80%以上。以變頻控制空調更可節能30%以上。因此使用混元式綠能空調系統可同時解決能源匱乏與空氣污染的問題,更可節能減碳並促使傳統之礦物能源時代加速轉移至氫氣能源時代。


This dissertation provides findings to solve the energy crisis in an era of human, the technology development confine to energy poverty and the greenhouse effect. Aims are to propose another probable energy application scenario, in order to develop a new environmentally-friendly energy that can replace mineral energy when traditional energy sources are exhausted, and guarantee sustainable development of the human civilization.
The research connotation is a hybrid system of power generation and air conditioning using a primary energy source well combined with a fuel cell, an absorption air conditioning system, and variable frequency air conditioning. The practice is to use hydrogen energy to generate electricity, and use renewable energy to create air conditioning, to develop a high-performance power converter. Thus, on one hand, dependence on traditional power generation through mineral energy and damage to the environment can be overcome; on the other hand, the overall efficiency of mechanical air conditioning using secondary energy can be increased, and consumption of existing energy can be reduced.
The findings show that the generating efficiency of a fuel cell using hydrogen as the power generation material exceeds 50%, the air conditioning efficiency of an absorption air conditioning system driven by thermal energy emissions from a fuel cell is increased by more than 50%, and the overall energy efficiency of the fuel cell is higher than 80%. Variable frequency controlled air conditioning can reduce energy consumption by more than 30%. Therefore, the hybrid green air conditioning system can simultaneously solve energy poverty and air pollution problems, while saving energy and reducing carbon emissions, and accelerating the transition of traditional mineral energy era to the hydrogen energy era.


目 錄

中文摘要 i
英文摘要 ii
誌謝 iv
目錄 V
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1研究背景與動機 1
1.2文獻回顧 1
1.3研究目的........................................... 2
1.4研究內容........................................... 3
第二章 研究方法 4
2.1混元式綠能空調系統之架構 4
2.2邊界條件設定及求解方法 5
2.3燃料電池應用特性 5
2.4吸收式空調系統特性 5
2.5變頻空調轉換系統性質 6
第三章 燃料電池結構循環系統設計分析 7
3.1前言 7
3.2燃料電池概述 7
3.3單電池結構 8
3.4燃料電池種類 9
3.5直接硼氫燃料電池(DBFC)動作原理 12
3.5.1 DBFC的電化學反應 12
3.5.2直接硼氫燃料電池(DBFC)相關元件及燃料特性 14
3.5.3依據邊界條件設計系統流程 17
3.6 DMFC/DBFC 應用特性評估 17
3.7燃料電池於空調系統能值分析 23
3.8 討論分析 24
3.9 結語 27
第四章 吸收式空調循環系統設計分析 28
4.1前言 28
4.2常用吸收式空調系統特性比較 28
4.2.1基本吸收式空調 28
4.2.2典型複合吸收式冷凍循環系統 29
4.2.3蒸餾型吸收式空調系統 32
4.2.4雙效吸收式空調系統 34
4.3吸收式空調系統特性 35
4.4系統與分析流程 36
4.4.1系統選定及週邊條件之設定 36
4.4.2吸收式冷凍機原理 37
4.4.3吸收式空調系統能質轉換過程 37
4.4.4吸收式空調系統能質分析 40
4.5吸收式空調系統效益評估 42
4.6結語 43
第五章 變頻冷氣系統設計分析 44
5.1前言 44
5.2變頻冷氣原理 44
5.3變頻空調轉換系統流程 45
5.4無橋式整流之交錯式高功因調整電路(B.I.P.F.C)設計 47
5.4.1 PFC省能設計 47
5.4.2 電路結構設計 47
5.4.3 Bridgeless Interleaved PFC主電路構造作用特性 48
5.4.4 控制電路迴圈構成示意 50
5.4.5 Bridgeless Interleaved PFC控制電路設計結構 51
5.4.6 控制電路工作說明 54
5.5設計電路之模擬特性 55
5.5.1傳統PFC模擬結果 55
5.5.2開迴路Bridgeless Interleaved PFC電路模擬特性 55
5.5.3閉回路Bridgeless Interleaved PFC電路特性模擬 56
5.6實作與測試結果 59
5.6.1實體電路結構 59
5.6.2測試結果 60
5.6.2.1控制電路測試結果 60
5.6.2.2不同負載時輸入及輸出測試結果 62
5.7結果討論 67
5.8結語 67
第六章 綠能空調系統之效益評估 68
6.1前言 68
6.2混元式綠能空調系統結構 68
6.3混元式綠能空調系統循環原理 69
6.4混元式綠能空調系統能質解析 69
6.4.1綠能空調系統運轉條件 69
6.4.2整體系統之能質分析 69
6.5結果討論 73
6.6結語............................................... 73
第七章 結論 74
7.1研究成果 74
7.2未來展望 75

參考文獻 76




表目錄

表3.1 常用燃料電池特性………………………..............…..........................10
表3.2 運轉溫度與開路電壓(OCV)特性關係...............................................15
表3.3 常見攜帶式電子產品耗電量............................................... .….18
表3.4 DMFC燃料電池/DBFC燃料電池理論參數.......................................19
表3.5 手機負載DMFC/DBFC性能參數結果…………………………….….25
表3.6 筆記型電腦負載DMFC/DBFC性能參數結果………………………. 25
表4.1 冷媒與吸收劑之組合對............................................. .….36





圖目錄

圖2.1 綠能混元式空調系統架構示意................................................ 4
圖3.1 燃料電池結構示意............................................ 8
圖3.2 燃料電池堆疊層結構.......................... ....................... 9
圖3.3 陽離子交換膜(CEM)和陰離子交換膜(AEM)個別作動示意..……..13
圖3.4 陽離子交換膜(CEM)型DBFC燃料電池示意........................... .14
圖3.5 實際DBFC燃料電池極化電壓/電流特性曲線損失示意 .14
圖3.6 NaBH4濃度/NaOH濃度/比重/比黏度特性......................................16
圖3.7 燃料電池操作系統流程…………………………………………..… 17
圖3.8 DMFC/DBFC手機負載性能參數比較………………………….…. 26
圖3.9 DMFC/DBFC筆記型電腦負載性能參數比較…………………….. 26
圖4.1 基本吸收式空調系統構造………………………………………….. 29
圖4.2 典型複合吸收式冷凍循環系統流程…………………………..….... 31
圖4.3 蒸餾型吸收式空調系統…………………………………………….. 33
圖4.4 雙效吸收式空調系統………………….………………………..…... 35
圖4.5 單段吸收式系統熱力流程示意………………………………….…. 37
圖4.6 LiBr 溶液循環濃度、溫度、壓力變化圖……………………..….. 38
圖4.7 LiBr 溶液循環濃度、溫度、焓特性圖…………………..……….. 39
圖4.8 吸收式系統冷媒循環圖(壓力-焓變化圖)……………..……….. 40
圖5.1 變頻冷氣控制驅動電路……………………………………….….. 46
圖5.2 傳統PFC開回路電路……………………………………..……….. 48
圖5.3 S1 on時電流路徑示意(正半週)……………………………….... 49
圖5.4 S2 on時電流路徑示意(正半週)……………………………...…. 49
圖5.5 輸出電壓漣波示意圖……………………………………………….. 49
圖5.6 Bridgeless Interleaved PFC 開迴路控制方塊流程示意圖………… 50
圖5.7 Bridgeless Interleaved PFC 閉迴路控制方塊流程示意圖………… 50
圖5.8 Bridgeless Interleaveds PFC 開回路控制之主電路與控制電路….. 52
圖5.9 Bridgeless Interleaveds PFC 閉迴路控制之主電路與控制電路….. 53
圖5.10傳統PFC控制電路圖模擬結果…………………………………….. 55
圖5.11開回路Bridgeless Interleaved PFC電路模擬結果…………………. 56
圖5.12以2000W之負載(RL=80Ω)閉回路BIPFC電路模擬結果…… 58
圖5.13閉回路Bridgeless Interleaveds PFC電路模擬結果(Rl=180Ω)…. 58
圖5.14閉回路Bridgeless Interleaved PFC電路模擬結果(Rl=580Ω)…... 59
圖5.15閉回路Bridgeless Interleaved PFC電路研究過程實體相片…….…. 60
圖5.16未加負載之S1、S2、S3、S4之激發信號測試結果………………… 61
圖5.17加負載之S1、S2、S3、S4之激發信號測試結果…………………… 62
圖5.18 BIPFC 電路負載160W測試結果(RL=1000Ω)………….…….. 64
圖5.19 BIPFC 電路負載1720W測試結果(RL=93Ω)…………….…… 65
圖5.20 BIPFC 電路負載2480W測試結果(RL=63Ω)…………….…… 66
圖6.1 綠能空調系統結構示意…………..………………………………..…. 68
圖6.2 R-22空調系統循環壓力-焓圖………………………………………. 72


















附錄

附錄A R-22冷煤特性圖………………………………………………………… 82
附錄B LiBr容液溫度、濃度、壓力線圖…………………………………….… 83
附錄C 水:液體與飽和蒸氣性質表………………………………………….…... 84


參考文獻

[1] C. Kim, K. J. Kim, M. Y. Ha, “Performance enhancement of a direct borohydride fuel cell in practical running condition”, Journal of Power Sources, 2008, vol.180, pp.154–161.
[2] C. C. Chuang, J. K. Lee etc. “Energy saving and carbon reduction performers analysis of NaBH4 hydrolysis product Hydrogen apply to FCV system ”, Mechatronics Magazine, 2009, Vol. 130 ,No6 , pp.126~135, Taipei, ROC.
[3] C. C. Chuang, J. K. Lee etc. “Exergy analysis of region geothermal energy for heating cooling and power cogeneration”, Mechatronics Magazine, 2009, Vol. 132 ,No8 , pp.135~148, Taipei, ROC.
[4] C. C. Chuang, J. K. Lee etc. “Exergy analysis of intercooling two section compressor with CO2 refrigerant heat pump”, Mechatronics Magazine, 2009, Vol. 133 ,No9 , pp.133~145, Taipei, ROC。
[5] C. C. Chuang, J. K. Lee etc. “Direct-boron-hydrogen fuel cell (DBFC) in micro electrical power system application characteristic research”, Mechatronics Magazine, 2009, Vol. 129 ,No5 , pp.76~82, Taipei, ROC.
[6] Chia-Chin Chuang, Jin-Kwei Lee etc. “Performance analysis of HIT solar film cell”, Chemical technology, 2008, Vol. 16 ,No2 , pp.159~173, Taipei, ROC。
[7] C. C. Chuang etc. “Type of the universe DMFC/rechargeable battery in portable electrical power system benefit analysis”, Mechatronics Magazine, 2007, May , Vol. 105, pp. 101~108, Taipei, ROC.
[8] C. C. Chuang etc. “Combine power、air condition and fuel cell in HFCV system benefit analysis”, Mechatronics Magazine, 2006, Nov. , Vol. 99, pp. 126~133, Taipei, ROC。
[9] C. C. Chuang etc. “Simulation and Performance Analysis of Lithium Bromide/Water for Absorption Heat Transformer Cycle System”, Elsevier, 2004, Vol. 30, pp. 1793~1801.
[10] C. C. Chuang etc. “Engineering design and exergy analyses for combustion gas turbine power generation system”, Journal of ENERGY, 2004, Vol. 29, pp. 1183~1205.
[11] C. C. Chuang etc. “Simulation and Performance Analysis of Lithium Bromide/Water for Absorption Heat Transformer Cycle System”, ASHRAE Transactions, 2004, Vol. 110, No.4733, pp. 409~416.
[12] C. C. Chuang etc. “Since the house with a suite-type PEFC Fuel Cell System Applications”, Monthly Electric, 2002, No5, pp.311~325, Taipei, ROC.
[13] P. Agnolucci, “Economics and market prospects of portable fuel cells”, International Journal of Hydrogen Energy , 2007, vol.32, pp.4319-4328.
[14] Z. P. Li, B. H. Liu, K. Arai, S. Suda, “Development of the direct borohydride fuel cell”, Journal of Alloys and Compounds, 2005, vol.404-406, pp.648-652.
[15] C. Ponce de Leon, F. C. Walsh, D. Pletcher, D. J. Browning, J. B. Lakeman, “Direct borohydride fuel cells”, Journal of Power Sources, 2006, vol.155, pp.172-181.
[16] C. C. Chuang etc. “Direct methanol fuel cell performance improvement”, Mechatronics Magazine, 2003, Vol. 55 ,No3 , pp.116~123, Taipei, ROC。

[17] U. B. Demirci, “Direct borohydride fuel cell: Main issues met by the membrane-electrodes-assembly and potential solutions”, Journal of Power Sources, 2007, vol.172, pp.676-687.
[18] H. Cheng, K. Scott, K. V. Lovell, J. A. Horsfall, S. C. Waring, “Evaluation of new ion exchange membranes for direct borohydride feuel cells”, Journal of Membrane Science, 2007, vol.228, pp.168-174.
[19] Z. P. Li, B. H. Liu, K. Arai, S. Suda, “Evaluation of alkaline borohydride solutions as the fuel for fuel cell”, Journal of Power Sources, 2004, vol.126, pp.28-33.
[20] H. Cheng, K. Scott, “Influence of operation conditions on direct borohydride feuel cell performance”, Journal of Power Sources, 2006, vol.160, pp.407-412.
[21] C. C. Chuang etc. “Stem electriclty paragenesis system benefit appraisal of highly effective biochemistry energy fuel cell”, Refrigeration engineering magazine of ROC., 2006, Mar. , Vol. 02, pp. 22~36, Taipei, ROC.
[22] J. H. Wee, “A comparison of borohydride as fuel for proton exchange membrane fuel cells and for direct borohydride fuel cells?”, Journal of Power Sources, 2006, vol.155, pp.329-339.

[23] J. Ma, N. A. Choudhury, Y. Sahai, “A comprehensive review of direct borohydride fuel cell”, Renewable and Sustainable Energy Reviews, 2010, vol. 14, pp183-199.
[24] R. Jamard, A. Latour, J. Salomon, P. Capron, Audrey Martinent-Beaumont, “Study of fuel efficiency in a direct borohydride fuel cell”, Journal of Power Sources, 2008, vol. 176, pp. 287–292.
[25] C. C. Chuang etc. “Direct methanol fuel cell used in portable equipment efficiency of 3C”, Mechatronics Magazine, 2006, Step. , Vol. 97, pp. 115~124, Taipei, ROC.
[26] C. C. Chuang etc. “Home uses the MCFC fuel cell applied in heating, cooling and power system benefit research”, Mechatronics Magazine, 2005, Nov. , Vol. 11, pp. 161~168, Taipei, ROC。
[27] M. Lshida, C. C. Chuang, “Graphic Exergy Analisis of Fuel-Cell System Basedon Energy-Utilization Diagrams”, International Symposium on Efficienc, Costs, Optimization and Simulation of Energy System (ECOS’92) , 1992, pp.293-298.
[28] 許守平編著,冷凍與空調原理與工程,台北:全華圖書公司,下冊第23-38頁。
[29] 蘇金佳譯,冷凍與空調,台北:高立圖書公司,2012,第393-418頁。
[30] C. C. Chuang, J. K Leeetc. “Combine Cooling Heating Power system exergy analysis of local Geothermal energy resources”, Mechatronics Magazine, 2009, Vol. 130 ,No6 , pp.126~135, Taipei, ROC.
[31] C. C. Chuang etc. “Beginning of the universe type air conditioning energy fuel battery vehicle HFCV system benefit analysis”, Mechatronics Magazine, 2006, Nov. , Vol. 99, pp. 126~133, Taipei, ROC.
[32] H. M. Wee, W. H. Yang, C. W. Chou, M. V. Padilan“Renewable energy supply chains, performance, application barriers, and strategies for further development”Renewable and Sustainable Energy Reviews 16(October(8))(2012) 5451-5465.
[33] N. S. Branka, T. Stajic, Z. Cepic, S. Djuric“Geothermal energy potentials in the province of Vojvooina from the aspect of the direct energy utilization”Renewable and Sustainable Energy Reviews 16(October(8))(2012) 5696-5706.
[34] E. Yildirim, A. Aslan, L. Ozturk“Coal consumption and industrial production nexus in USA:Cointegration with two unknown structural breaks and causality approaches”Renewable and Sustainable Energy Reviews 16(October(8))(2012) 6123-6127.
[35] Y. C. Chang, C. Y. Chen etc. “Verification of Chiller Performance Promotion and Energy Saving”, Engineering, 2013, 5, pp. 141-145.
[36] Y. C. Chang, C. R. Su, etc. “Application of Air-cooled Chiller for Comfort and Energy Saving ”, Int. Journal of Electronics Communications and Electrical Engineering, 2012, Vol. 2, Issue 12, pp. 12-24.
[37] C. A. Ramos-Paja, E. Arango, R. Giral, A. J. Saavedra-Montes, C. Carrejo,“DC/DC per-regulator for input current ripple reduction and efficiency improvement”,Electric Power Systems Research 81(2011)2048-2055.
[38] A. H. Bhat, P. Agarwal, T. Hase, “power quality improvement AC/DC converters”,Electric Power Systems Research 78(2008)276-289.
[39] B. R. Lin, “A single-phase three-level pulsewidth modulation AC/DC converter with the function of power factor corrector and active power filter”,Electric Power Systems Research 58(2001)157-167.
[40] J. Y. Chai and C. M. Liaw, “Robust Control of switch-mode rectifier considering nonlinear behaviour” IET Electr. Power Appl. 2007, May, VOL.1, NO. 3.
[41] Y. Jang, Senior Member, IEEE, and Milan M. Jovanovic, Fellow, IEEE “Interleaved Boost Converter With Intrinsic Voltage-Doubler Characteristic for Universal- Line PFC Front End” IEEE transactions on power electronics, 2007 , July ,VOL. 22, NO. 4.
[42] A. Kessal, R. Lazhar, J. P. Gaubert, M. Mohammed, “Analysis and design of an isolated single-phase power factor corrector with a fast regulation”,Electric Power Systems Research 81(2011)1825-1831.
[43] K Georgakas, A. Safacas,“Switching frequency determination of a bidirectional AC-DE converter to improve both power factor and efficiency”,Electric Power Systems Research 81(2011)1572-1582.
[44] J. L. Lin, S. P. Yang, P. W. Lin,“Small-signal analysis and controller design for an isolated zeta converter with high power factor correction”,Electric Power Systems Research 76(2005)67-76.
[45] L. Huber, Member, IEEE, Yungtaek Jang, Senior member, IEEE, and Milan M. Jovanovic, Fellow, IEEE “Performance Evaluation of Bridgeless PFC Boost Rectifiers” IEEE transactions on power electronics, 2008, May, VOL. 23, NO.3.
[46] M. Orabi, T. Ninomiya, “A Unified Design of Single-stage and Two-Stage PFC Converter” IEEE Xplore, 0-7803-7754-0/03(2003)1720-1725.
[47] D. G. Lamar, Student Member, IEEE, Arturo Fernandez, Member, IEEE, Manuel Arias, Student Member, IEEE, Miguel Rodriguez, Student Member, IEEE, Javier Sebastian, Member, IEEE, and Marta Maria Hernando, Member, IEEE,“A Unity Power Factor Correction Preregulator With Fast Dynamic Response Based on a Low-cost Microcontroller” IEEE transactions on power electronics, 2008 , March, VOL. 23, NO. 2.
[48] M. A. Ai-Saffar, E. H. Ismail, A. J. Sabzali, “Integrated Buck-Boost-Quadratic Buck PFC rectifier for universal input application” Power electronics, IEEE Transactions on Vol.24,Issue12(2009)2886-2896.
[49] Y. Jang, “Integrated Boost converter with intrinsic voltage-doubler characteristic for universal-line PFCfront end” Power electronics, IEEE Transactions on Vol.22,Issue4(2007)1394-1401.
[50] L. Guihua, W. Wei, L. Jing, X. Dianguo “Research on Conventional PFC and Bridgeless PFC in Air Conditioner” Xplore 2004.
[51] Y. Li, T. Takahashi,“A digitally controlled 4-kW single-phase bridgeless PFC circuit for air conditioner motor drive application”IEEE Xplore. 1-4244-0449-5/06 (2006) 1-5.
[52] Z. Luo, C. Wang, M. Xu, P. Kong, F. C. Lee,“DCR current sensing technique for PFC circuits”IEEE Xplore. 978-4244-1874-9/08 (2008) 1384-1388.
[53] L. Yang, B. Lu, W. Dong, Z. Lu, M. Xu, F. C. Lee and W. G. Odendaal “Modeling and Characterization of a 1KW CCM PFC Converter for Conducted EMI Prediction” IEEE Xplore 2004.
[54] J. R. Tsai, T. F. Wu, Senior Member, IEEE, Chang-Yu Wu, Yaow-Ming Chen, Senior Member, IEEE, and Ming-Chuan Lee “Interleaving Phase Shifters for Critical-Mode Boost PFC” IEEE transactions on power electronics, 2008, May ,VOL. 23, NO. 3.
[55] N. Genc, Ires Iskender“An improved soft switched PWM interleaved boost AC-DC converter”Energy Conversion and Management 52(2011)403-413.
[56] S. Abdallah “The effect of using sun tracking systems on the voltage-current characteristics and power generation of flat plate photovoltaics” Energy Conversion and Management 45(2004) 1671-1679.
[57] A. Yattara, Y. Zhu, M. Mosa Ali “Comparison between solar single-effect and single-lift absorption machines (part I)”Applied Thermal Engineering 23(2003) 1981-1992.
[58] R. J. Romero, W. Rivera, R. Best “Comparison of the theoretical performance of a solar air conditioning system operating with water/lithium bromide and an aqueous ternary hydroxide”Solar Energy Materials &; Solar Cells 63 (2000) 387-399.
[59] McQuiston, Parker, Spitler, Heating Ventilating and Air-conditioning, New York: John Wily &; Sons, 2006, pp.299-358.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊