跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/09 22:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳莉婷
研究生(外文):Li-Ting Chen
論文名稱:鐵元素對三元金屬玻璃薄膜微結構及機械性質之影響研究
論文名稱(外文):Influences of iron content on the microstructure and mechanical properties of ternary thin film metallic glass
指導教授:楊永欽楊永欽引用關係
指導教授(外文):Yung-Chin Yang
口試委員:吳宛玉朱瑾
口試委員(外文):Jinn Chu
口試日期:2014-06-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料及資源工程系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:109
中文關鍵詞:Zr-Ti-Fe金屬玻璃薄膜(TFMGs)鐵基附著性測試奈米壓痕試驗動電位極化試驗
外文關鍵詞:Zr-Ti-FeThin films metallic glasses (TFMGs)Iron-basedAdhesionnanoindentation testPotentiodynamic polarization test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,金屬玻璃薄膜(TFMGs)是相當有前景的工程材料,具有特殊機械性質與熱性質,因而被學術界廣泛研究,然而含鐵的金屬玻璃薄膜材料的研究與開發較少被探討,因此本實驗利用純鐵靶、鋯靶和鈦靶以磁控共濺鍍系統來製備含鐵的金屬玻璃薄膜。
主要分為三個階段,第一階段主要是藉由控制鐵靶濺鍍功率來改變鐵含量,以濺鍍出鋯基(Zr-Ti-Fe)金屬玻璃薄膜,隨著鐵靶功率從100上升至300瓦時,鐵含量也由 13.0 at.%大幅提升至37.6 at.%,薄膜硬度也從5.4 GPa 提升至7.3 GPa,附著性品質也有不錯的性能。第二階段則延續第一階段實驗並持續增加鐵靶功率至500瓦,使薄膜由鋯基轉變成鐵基(Fe-Zr-Ti)金屬玻璃薄膜,當鐵含量為49.8 at.%時,可得到最大硬度9.3 GPa 及最大彈性模數124 GPa。第三階段是將第一階段的鋯靶與鈦靶之濺鍍功率及電源供應模式做改變且鐵靶功率範圍從100至250瓦,以獲得不同鐵含量之鈦基(Ti-Zr-Fe)金屬玻璃薄膜,其中,鐵含量介於17.8至36.0 at.%之間,隨鐵含量越多,硬度從5.5增加至8.2 GPa,且薄膜之附著性品質皆為HF1等級。

Thin films metallic glasses (TFMGs) represent a class of promising engineering materials for structural applications. Despite the effort that has been made in the development of TFMG materials, the Iron-based thin film metallic glasses fabricated by sputtering have gained limited attention. In this work, thin film metallic glasses with different Fe contents were prepared by magnetron co-sputtering system using pure Fe, Zr and Ti targets.
This work can be divided into three parts. In the first part, the Zr-Ti-Fe TFMGs were fabricated by adjusting the target power of Fe. The Fe contents changed from 13.0 to 37.6 at.% and the hardness increased from 5.4 to 7.3 GPa when the target power of Fe increased from 100 to 300 W. The adhesion of Zr-Ti-Fe TFMGs was very good. The second part was the continuity of the first part, in which the target power of Fe increased up to 500 W and became the Fe-based Fe-Zr-Ti TFMGs. The maximum hardness, 9.3 GPa and elastic modulus, 124 GPa were obtained when the Fe content was 49.8 at.%. For the third part, the target power values of Ti, Zr and Fe were changed to fabricate the Ti-Zr-Fe TFMGs. The hardness of Ti-Zr-Fe TFMG increased from 5.5 to 8.2 GPa when the Fe content increased from 17.8 to 36.0 at.%. The adhesion quality level of each Ti-Zr-Fe TFMG was HF1 indicating its excellent adhesion property.

摘 要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 磁控濺鍍系統之原理 3
2.1.1 脈衝磁控濺鍍系統 4
2.1.2 射頻式(RF)磁控濺鍍系統 5
2.2 塊狀金屬玻璃(Bulk metallic glass, BMGs) 5
2.3 玻璃形成能力(Glass forming ability, GFA) 8
2.3.1 A. Inoue之三項經驗法則 8
2.3.2 簡約玻璃轉變溫度 T?g =Tg/Tl 9
2.3.3 過冷液態溫度區ΔTx=Tx-Tg 10
2.3.4 γ參數γ=Tx/ (Tg+Tl ) 10
2.3.5 非晶態原子堆積模型 11
2.4 金屬玻璃薄膜 (Thin film metallic glass, TFMGs) 13
第三章 實驗方法 16
3.1 實驗流程與簡介 16
3.2 實驗方法與步驟 17
3.2.1 基材試片規格與前處理 17
3.2.2 實驗設備與濺鍍製程 17
3.2.3 實驗進行之步驟 22
3.3 材料分析 23
3.3.1 成份分析實驗 23
3.3.2 表面與截面形貌分析 24
3.3.3 X光繞射分析試驗 24
3.3.4 熱性質分析 24
3.3.5 硬度試驗 25
3.3.6 附著性試驗 27
3.3.6.1 刮痕試驗 27
3.3.6.2 HRC-DB試驗 29
3.3.7 電化學腐蝕檢測 30
第四章 結果與討論 31
4.1 鐵元素對鋯(Zr-Ti-Fe)基金屬玻璃薄膜性質分析 31
4.1.1 A.Inoue三項經驗法則之判定 31
4.1.2 成分分析 32
4.1.3 晶相分析 33
4.1.4 微結構分析 35
4.1.4.1 表面形貌分析 35
4.1.4.2 橫截面結構分析 36
4.1.4.3 TEM微結構分析 38
4.1.5 硬度及彈性係數分析 44
4.1.6 附著性試驗 46
4.1.6.1 刮痕分析 46
4.1.6.2 HRC-DB分析 48
4.1.7 動電位極化試驗 50
4.2 鐵元素對鐵(Fe-Zr-Ti)基金屬玻璃薄膜性質分析 54
4.2.1 成分分析 54
4.2.2 晶相分析 56
4.2.3 熱性質分析 57
4.2.4 微結構分析 59
4.2.4.1 表面形貌分析 59
4.2.4.2 橫截面結構分析 60
4.2.4.3 TEM微結構分析 62
4.2.5 硬度及彈性係數分析 65
4.2.6 附著性試驗 67
4.2.6.1 刮痕分析 67
4.2.6.2 HRC-DB分析 69
4.2.7 動電位極化試驗 71
4.3 鐵元素對鈦(Ti-Zr-Fe)基金屬玻璃薄膜性質分析 76
4.3.1 成分分析 76
4.3.2 晶相分析 78
4.3.3 微結構分析 79
4.3.3.1 表面形貌分析 79
4.3.3.2 橫截面結構分析 80
4.3.3.3 TEM微結構分析 81
4.3.4 硬度及彈性係數分析 86
4.3.5 附著性試驗 88
4.3.5.1 刮痕分析 88
4.3.5.2 HRC-DB分析 90
4.3.6 動電位極化試驗 91
4.4 綜合性比較 95
4.4.1 三元相圖 95
4.4.2 表面粗糙度比較 96
4.4.3 硬度及彈性係數比較 96
4.4.4 附著性比較 98
4.4.5 抗腐蝕性比較 99
第五章 結論 101
參考文獻 103

[1]W. Klement, R. H. Willens, P. Duwez, "Non-crystalline Structure in Solidified Gold-Silicon Alloys," Nature, 187(4740), 1960, pp. 869-870.
[2]A. Inoue, "Bulk amorphous and nanocrystalline alloys with high functional properties," Materials Science and Engineering, A304-306, 2001, pp. 1-10.
[3]M. Telford, "The case for bulk metallic glass," Materials Today, 7(3), 2004, pp. 36-43.
[4]Y. P. Deng, Y. F. Guan, J. D. Fowlkes, S. Q. Wen, F. X. Liu, G. M. Pharr, P. K. Liaw, C. T. Liu, P. D. Rack, "A combinatorial thin film sputtering approach for synthesizing and characterizing ternary ZrCuAl metallic glasses," Intermetallics, 15(9), 2007, pp. 1208-1216.
[5]Q. S. Zhang, W. Zhang, X. M. Wang, Y. Yokoyama, K. Yubuta, A. Inoue, "Structure, Thermal Stability and Mechanical Properties of Zr65Al7.5Ni10Cu17.5 Glassy Alloy Rod with a Diameter of 16 mm Produced by Tilt Casting," Materials Transactions, 49(9), 2008, pp. 2141-2146.
[6]F. X. Liu, F. Q. Yang, Y. F. Gao, W. H. Jiang, Y. F. Guan, P. D. Rack, O. Sergic, P. K. Liaw, "Micro-scratch study of a magnetron-sputtered Zr-based metallic-glass film," Surface and Coatings Technology, 203(22), 2009, pp. 3480-3484.
[7]J. P. Chu, C. M. Lee, R. T. Huang, P. K. Liaw, "Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects," Surface and Coatings Technology, 205(16), 2011, pp. 4030-4034.
[8]J. P. Chu, J. S. C. Jang, J. C. Huang, H. S. Chou, Y. Yang, J. C. Ye, Y. C. Wang, J. W. Lee, F. X. Liu, P. K. Liaw, Y. C. Chen, C. M. Lee, C. L. Li, C. Rullyani, "Thin film metallic glasses: Unique properties and potential applications," Thin Solid Films, 520(16), 2012, pp. 5097-5122.
[9]C.-Y. Chuang, Y.-C. Liao, J.-W. Lee, C.-L. Li, J. P. Chu, J.-G. Duh, "Electrochemical characterization of Zr-based thin film metallic glass in hydrochloric aqueous solution," Thin Solid Films, 529, 2013, pp. 338-341.
[10]G. Kumar, A. Desai, J. Schroers, "Bulk metallic glass: the smaller the better," Adv Mater, 23(4), 2011, pp. 461-76.
[11]J. S. C. Jang, L. J. Chang, G. J. Chen, J. C. Huang, "Crystallization behavior of the Zr63Al7.5Cu17.5Ni10B2 amorphous alloy during isothermal annealing," Intermetallics, 13(8), 2005, pp. 907-911.
[12]J. S. C. Jang, L. J. Chang, T. H. Hung, J. C. Huang, C. T. Liu, "Thermal stability and crystallization of Zr–Al–Cu–Ni based amorphous alloy added with boron and silicon," Intermetallics, 14(8–9), 2006, pp. 951-956.
[13]Y. T. Cheng, T. H. Hung, J. C. Huang, P. J. Hsieh, J. S. C. Jang, "Thermal stability and crystallization kinetics of Mg–Cu–Y–B quaternary alloys," Materials Science and Engineering: A, 449–451(0), 2007, pp. 501-505.
[14]T. H. Hung, J. C. Huang, J. S. C. Jang, S. C. Lu, "Improved Thermal Stability of Amorphous ZrAlCuNi Alloys with Si and B," Materials Transactions, 48(2), 2007, pp. 239-243.
[15]B. Shen, H. Men, A. Inoue, "Fe-based bulk glassy alloy composite containing in situ formed α-(Fe,Co) and (Fe,Co)23B6 microcrystalline grains," Applied Physics Letters, 89(10), 2006, p. 101915.
[16]S. Yoon, C. Lee, H. Choi, "Evaluation of the effects of the crystallinity of kinetically sprayed Ni–Ti–Zr–Si–Sn bulk metallic glass on the scratch response," Materials Science and Engineering: A, 449-451, 2007, pp. 285-289.
[17]H. S. Ni, X. H. Liu, X. C. Chang, W. L. Hou, W. Liu, J. Q. Wang, "High performance amorphous steel coating prepared by HVOF thermal spraying," Journal of Alloys and Compounds, 467(1-2), 2009, pp. 163-167.
[18]G. Liu, Y. An, Z. Guo, J. Chen, G. Hou, J. Chen, "Structure and corrosion behavior of iron-based metallic glass coatings prepared by LPPS," Applied Surface Science, 258(14), 2012, pp. 5380-5386.
[19]T. A. Phan, S. Lee, A. Makino, H. Oguchi, H. Okamoto, H. Kuwano, "Fabrication and Characterization of an FeBNdNb Magnetic Metallic Glass Thin Film," Japanese Journal of Applied Physics, 51, 2012, p. 055803.
[20]J. W. Lee, Y. C. Lin, N. Kaushik, P. Sharma, A. Makino, A. Inoue, M. Esashi, T. Gessner, "Micromirror with large-tilting angle using Fe-based metallic glass," Optics Letters, 36(17), 2011, pp. 3464-3466.
[21]Z. Zhou, L. Wang, F. C. Wang, H. F. Zhang, Y. B. Liu, S. H. Xu, "Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying," Surface and Coatings Technology, 204(5), 2009, pp. 563-570.
[22]C. Zhang, K. C. Chan, Y. Wu, L. Liu, "Pitting initiation in Fe-based amorphous coatings," Acta Materialia, 60(10), 2012, pp. 4152-4159.
[23]Y. Wang, Y. G. Zheng, W. Ke, W. H. Sun, W. L. Hou, X. C. Chang, J. Q. Wang, "Slurry erosion–corrosion behaviour of high-velocity oxy-fuel (HVOF) sprayed Fe-based amorphous metallic coatings for marine pump in sand-containing NaCl solutions," Corrosion Science, 53(10), 2011, pp. 3177-3185.
[24]P. J. Kelly, R. D. Arnell, "Magnetron sputtering: a review of recent developments and applications," Vacuum, 56(3), 2000, pp. 159-172.
[25]楊明輝, "脈衝磁控濺鍍技術介紹," 工業材料雜誌, 232, 2006, pp. 91-98.
[26]A. L. Greer, "Metallic Glasses," SCIENCE, 267, 1995, pp. 1947-1953.
[27]T. Itoi, A. Inoue, "Thermal Stability and Soft Magnetic Properties of Co-Fe-M-B (M=Nb, Zr) Amorphous Alloys with Large Supercooled Liquid Region," Materials Transactions, 41(9), 1998, pp. 1256-1262.
[28]P. Sharma, H. Kimura, A. Inoue, E. Arenholz, J. H. Guo, "Temperature and thickness driven spin-reorientation transition in amorphous Co-Fe-Ta-B thin films," Physical Review B, 73(5), 2006, p. 052401.
[29]J. C. Huang, J. P. Chu, J. S. C. Jang, "Recent progress in metallic glasses in Taiwan," Intermetallics, 17(12), 2009, pp. 973-987.
[30]H. S. Chen, C. E. Miller, "A Rapid Quenching Technique for the Preparation of Thin Uniform Films of Amorphous Solids," Review of Scientific Instruments, 41(8), 1970, pp. 1237-1238.
[31]H. H. Liebermann, C. D. Graham, "Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions," IEEE Transactions on Magnetics, 12(6), 1976, pp. 921-923.
[32]吳學陞, "新興材料-塊狀非晶質金屬材料," 工業材料, 149, 1999, pp. 154-159.
[33]A. J. Drehman, A. L. Greer, "Kinetics of crystal nucleation and growth in Pd40Ni40P20 glass," Acta Metallurgica, 32(3), 1984, pp. 323-332.
[34]A. Inoue, T. Zhang, T. Masumoto, "Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region," Materials Transactions, JIM, 30, 1989, pp. 965-972.
[35]A. Inoue, "High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates," Materials Transactions, JIM, 36(7), 1995, pp. 866-875.
[36]A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, "Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Structure Produced by a High-Pressure Die Casting Method," Materials Transactions, JIM, 33, 1992, pp. 937-945.
[37]A. Inoue, T. Zhang, T. Masumto, "Amorphous Zr-Al-TM (TM=Co, Ni, Cu) Alloys with Significant Supercooled Liquid Region of Over 100 K," Materials Transactions, JIM, 32, 1991, pp. 1005-1008.
[38]A. Inoue, N. Nishiyama, H. Kimura, "Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter," Materials Transactions Jim, 38(2), 1997, pp. 179-183.
[39]惠希東、陳國良, 塊體非晶合金. 北京:化學工業出版社, 2007.
[40]A. Inoue, T. Zhang, A. Takeuchi, "Ferrous and Nonferous Bulk Amorphous Alloys," Materials Science Forum, 269-272, 1998, pp. 855-864.
[41]A. Inoue, A. Takeuchi, T. Zhang, "Ferromagnetic Bulk Amorphous Alloys," Materials Science Forum, 29(7), 1998, pp. 1779-1793.
[42]F. Q. Guo, S. J. Poon, G. J. Shiflet, "CaAl-based bulk metallic glasses with high thermal stability," Applied Physics Letters, 84(1), 2004, p. 37.
[43]L. Xia, D. Ding, S. T. Shan, Y. D. Dong, "The glass forming ability of Cu-rich Cu–Hf binary alloys," Journal of Physics: Condensed Matter, 18(15), 2006, pp. 3543-3548.
[44]D. Xu, B. Lohwongwatana, G. Duan, W. L. Johnson, C. Garland, "Bulk metallic glass formation in binary Cu-rich alloy series – Cu100−xZrx (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass," Acta Materialia, 52(9), 2004, pp. 2621-2624.
[45]L. Xia, W. H. Li, S. S. Fang, B. C. Wei, Y. D. Dong, "Binary Ni–Nb bulk metallic glasses," Journal of Applied Physics, 99(2), 2006, p. 026103.
[46]R. Schulz, K. Samwer, W. L. Johnson, "Kinetics of phase separation in Cu50Zr50 metallic glasses," Journal of Non-Crystalline Solids, 61–62, Part 2, 1984, pp. 997-1002.
[47]L. E. Tanner, R. Ray, "Phase separation in Zr-Ti-Be metallic glasses," Scripta Metallurgica, 14(6), 1980, pp. 657-662.
[48]D. Turnbull, "Under what conditions can a glass be formed?," Contemporary Physics, 10(5), 1969, pp. 473-488.
[49]Z. P. Lu, H. Tan, S. C. Ng, Y. Li, "The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses," Scripta Materialia, 42(7), 2000, pp. 667-673.
[50]A. Inoue, T. Zhang, T. Masumoto, "Glass-forming ability of alloys," Journal of Non-Crystalline Solids, 156–158, Part 2, 1993, pp. 473-480.
[51]T. A. Waniuk, J. Schroers, W. L. Johnson, "Critical cooling rate and thermal stability of Zr–Ti–Cu–Ni–Be alloys," Applied Physics Letters, 78(9), 2001, p. 1213.
[52]A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, "High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems," Acta Materialia, 49(14), 2001, pp. 2645-2652.
[53]Z. P. Lu, C. T. Liu, "A new glass-forming ability criterion for bulk metallic glasses," Acta Materialia, 50(13), 2002, pp. 3501-3512.
[54]Z. P. Lu, Y. Li, S. C. Ng, "Reduced glass transition temperature and glass forming ability of bulk glass forming alloys," Journal of Non-Crystalline Solids, 270(1–3), 2000, pp. 103-114.
[55]D. B. Miracle, "The efficient cluster packing model – An atomic structural model for metallic glasses," Acta Materialia, 54(16), 2006, pp. 4317-4336.
[56]D. B. Miracle, "A structural model for metallic glasses," Nat Mater, 3(10), 2004, pp. 697-702.
[57]C. T. Liu, L. Heatherly, J. A. Horton, D. S. Easton, C. A. Carmichael, J. L. Wright, J. H. Schneibel, M. H. Yoo, C. H. Chen, A. Inoue, "Test environments and mechanical properties of Zr-base bulk amorphous alloys," Metallurgical and Materials Transactions A, 29(7), 1998, pp. 1811-1820.
[58]Z. Han, H. Yang, W. F. Wu, Y. Li, "Invariant critical stress for shear banding in a bulk metallic glass," Applied Physics Letters, 93(23), 2008, p. 231912.
[59]S. X. Song, H. Bei, J. Wadsworth, T. G. Nieh, "Flow serration in a Zr-based bulk metallic glass in compression at low strain rates," Intermetallics, 16(6), 2008, pp. 813-818.
[60]H. Bei, S. Xie, E. P. George, "Softening Caused by Profuse Shear Banding in a Bulk Metallic Glass," Physical Review Letters, 96(10), 2006, p. 105503.
[61]C. L. Chiang, J. P. Chu, F. X. Liu, P. K. Liaw, R. A. Buchanan, "A 200 nm thick glass-forming metallic film for fatigue-property enhancements," Applied Physics Letters, 88(13), 2006, p. 131902.
[62]J. P. Chu, C. T. Liu, T. Mahalingam, S. F. Wang, M. J. O’Keefe, B. Johnson, C. H. Kuo, "Annealing-induced full amorphization in a multicomponent metallic film," Physical Review B, 69(11), 2004, p. 113410.
[63]S. Ningshen, U. Kamachi Mudali, R. Krishnan, B. Raj, "Corrosion behavior of Zr-based metallic glass coating on type 304L stainless steel by pulsed laser deposition method," Surface and Coatings Technology, 205(15), 2011, pp. 3961-3966.
[64]Y. Matsumoto, M. Hiraoka, M. Katayama, S. Hata, M. Fukuhara, T. Wada, H. Kimura, A. Inoue, "In situ analysis of the thermal behavior in the Zr-based multi-component metallic thin film by pulsed laser deposition combined with UHV-laser microscope system," Materials Science and Engineering: B, 148(1–3), 2008, pp. 179-182.
[65]A. Kobayashi, T. Kuroda, H. Kimura, A. Inoue, "Effect of spraying condition on property of Zr-based metallic glass coating by gas tunnel type plasma spraying," Materials Science and Engineering: B, 173(1–3), 2010, pp. 122-125.
[66]F. X. Liu, P. K. Liaw, W. H. Jiang, C. L. Chiang, Y. F. Gao, Y. F. Guan, J. P. Chu, P. D. Rack, "Fatigue-resistance enhancements by glass-forming metallic films," Materials Science and Engineering: A, 468–470(0), 2007, pp. 246-252.
[67]P.-S. Chen, H.-W. Chen, J.-G. Duh, J.-W. Lee, J. Shian-Ching Jang, "Mechanical and thermal behaviors of nitrogen-doped Zr-Cu-Al-Ag-Ta––An alternative class of thin film metallic glass," Applied Physics Letters, 101(18), 2012, p. 181902.
[68]P.-S. Chen, H.-W. Chen, J.-G. Duh, J.-W. Lee, J. S.-C. Jang, "Characterization of mechanical properties and adhesion of Ta–Zr–Cu–Al–Ag thin film metallic glasses," Surface and Coatings Technology, 231, 2013, pp. 332-336.
[69]W. C. Oliver, G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of Materials Research, 7(06), 1992, pp. 1564-1583.
[70]TriboScope User Manual: Hysitron Inc, 2002.
[71]M. Odén, C. Ericsson, G. Håkansson, H. Ljungcrantz, "Microstructure and mechanical behavior of arc-evaporated Cr–N coatings," Surface and Coatings Technology, 114(1), 1999, pp. 39-51.
[72]P. o. c. f. t. Coating (CVD, Verein Deutscher Ingenieure Normen, VDI 3198, VDI-Verlag, Dusseldorf, 1991.
[73]H. Jehn, G. Reiners, N. Siegel, D. I. f. r. Normung, Charakterisierung dünner Schichten. Berlin: Beuth Verlag, 1993.
[74]A. Takeuchi, A. Inoue, "Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element," Materials Transactions, 46(12), 2005, pp. 2817-2829.
[75]C. A. Schuh, T. G. Nieh, "A nanoindentation study of serrated flow in bulk metallic glasses," Acta Materialia, 51(1), 2003, pp. 87-99.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top