|
[1]W. Klement, R. H. Willens, P. Duwez, "Non-crystalline Structure in Solidified Gold-Silicon Alloys," Nature, 187(4740), 1960, pp. 869-870. [2]A. Inoue, "Bulk amorphous and nanocrystalline alloys with high functional properties," Materials Science and Engineering, A304-306, 2001, pp. 1-10. [3]M. Telford, "The case for bulk metallic glass," Materials Today, 7(3), 2004, pp. 36-43. [4]Y. P. Deng, Y. F. Guan, J. D. Fowlkes, S. Q. Wen, F. X. Liu, G. M. Pharr, P. K. Liaw, C. T. Liu, P. D. Rack, "A combinatorial thin film sputtering approach for synthesizing and characterizing ternary ZrCuAl metallic glasses," Intermetallics, 15(9), 2007, pp. 1208-1216. [5]Q. S. Zhang, W. Zhang, X. M. Wang, Y. Yokoyama, K. Yubuta, A. Inoue, "Structure, Thermal Stability and Mechanical Properties of Zr65Al7.5Ni10Cu17.5 Glassy Alloy Rod with a Diameter of 16 mm Produced by Tilt Casting," Materials Transactions, 49(9), 2008, pp. 2141-2146. [6]F. X. Liu, F. Q. Yang, Y. F. Gao, W. H. Jiang, Y. F. Guan, P. D. Rack, O. Sergic, P. K. Liaw, "Micro-scratch study of a magnetron-sputtered Zr-based metallic-glass film," Surface and Coatings Technology, 203(22), 2009, pp. 3480-3484. [7]J. P. Chu, C. M. Lee, R. T. Huang, P. K. Liaw, "Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects," Surface and Coatings Technology, 205(16), 2011, pp. 4030-4034. [8]J. P. Chu, J. S. C. Jang, J. C. Huang, H. S. Chou, Y. Yang, J. C. Ye, Y. C. Wang, J. W. Lee, F. X. Liu, P. K. Liaw, Y. C. Chen, C. M. Lee, C. L. Li, C. Rullyani, "Thin film metallic glasses: Unique properties and potential applications," Thin Solid Films, 520(16), 2012, pp. 5097-5122. [9]C.-Y. Chuang, Y.-C. Liao, J.-W. Lee, C.-L. Li, J. P. Chu, J.-G. Duh, "Electrochemical characterization of Zr-based thin film metallic glass in hydrochloric aqueous solution," Thin Solid Films, 529, 2013, pp. 338-341. [10]G. Kumar, A. Desai, J. Schroers, "Bulk metallic glass: the smaller the better," Adv Mater, 23(4), 2011, pp. 461-76. [11]J. S. C. Jang, L. J. Chang, G. J. Chen, J. C. Huang, "Crystallization behavior of the Zr63Al7.5Cu17.5Ni10B2 amorphous alloy during isothermal annealing," Intermetallics, 13(8), 2005, pp. 907-911. [12]J. S. C. Jang, L. J. Chang, T. H. Hung, J. C. Huang, C. T. Liu, "Thermal stability and crystallization of Zr–Al–Cu–Ni based amorphous alloy added with boron and silicon," Intermetallics, 14(8–9), 2006, pp. 951-956. [13]Y. T. Cheng, T. H. Hung, J. C. Huang, P. J. Hsieh, J. S. C. Jang, "Thermal stability and crystallization kinetics of Mg–Cu–Y–B quaternary alloys," Materials Science and Engineering: A, 449–451(0), 2007, pp. 501-505. [14]T. H. Hung, J. C. Huang, J. S. C. Jang, S. C. Lu, "Improved Thermal Stability of Amorphous ZrAlCuNi Alloys with Si and B," Materials Transactions, 48(2), 2007, pp. 239-243. [15]B. Shen, H. Men, A. Inoue, "Fe-based bulk glassy alloy composite containing in situ formed α-(Fe,Co) and (Fe,Co)23B6 microcrystalline grains," Applied Physics Letters, 89(10), 2006, p. 101915. [16]S. Yoon, C. Lee, H. Choi, "Evaluation of the effects of the crystallinity of kinetically sprayed Ni–Ti–Zr–Si–Sn bulk metallic glass on the scratch response," Materials Science and Engineering: A, 449-451, 2007, pp. 285-289. [17]H. S. Ni, X. H. Liu, X. C. Chang, W. L. Hou, W. Liu, J. Q. Wang, "High performance amorphous steel coating prepared by HVOF thermal spraying," Journal of Alloys and Compounds, 467(1-2), 2009, pp. 163-167. [18]G. Liu, Y. An, Z. Guo, J. Chen, G. Hou, J. Chen, "Structure and corrosion behavior of iron-based metallic glass coatings prepared by LPPS," Applied Surface Science, 258(14), 2012, pp. 5380-5386. [19]T. A. Phan, S. Lee, A. Makino, H. Oguchi, H. Okamoto, H. Kuwano, "Fabrication and Characterization of an FeBNdNb Magnetic Metallic Glass Thin Film," Japanese Journal of Applied Physics, 51, 2012, p. 055803. [20]J. W. Lee, Y. C. Lin, N. Kaushik, P. Sharma, A. Makino, A. Inoue, M. Esashi, T. Gessner, "Micromirror with large-tilting angle using Fe-based metallic glass," Optics Letters, 36(17), 2011, pp. 3464-3466. [21]Z. Zhou, L. Wang, F. C. Wang, H. F. Zhang, Y. B. Liu, S. H. Xu, "Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying," Surface and Coatings Technology, 204(5), 2009, pp. 563-570. [22]C. Zhang, K. C. Chan, Y. Wu, L. Liu, "Pitting initiation in Fe-based amorphous coatings," Acta Materialia, 60(10), 2012, pp. 4152-4159. [23]Y. Wang, Y. G. Zheng, W. Ke, W. H. Sun, W. L. Hou, X. C. Chang, J. Q. Wang, "Slurry erosion–corrosion behaviour of high-velocity oxy-fuel (HVOF) sprayed Fe-based amorphous metallic coatings for marine pump in sand-containing NaCl solutions," Corrosion Science, 53(10), 2011, pp. 3177-3185. [24]P. J. Kelly, R. D. Arnell, "Magnetron sputtering: a review of recent developments and applications," Vacuum, 56(3), 2000, pp. 159-172. [25]楊明輝, "脈衝磁控濺鍍技術介紹," 工業材料雜誌, 232, 2006, pp. 91-98. [26]A. L. Greer, "Metallic Glasses," SCIENCE, 267, 1995, pp. 1947-1953. [27]T. Itoi, A. Inoue, "Thermal Stability and Soft Magnetic Properties of Co-Fe-M-B (M=Nb, Zr) Amorphous Alloys with Large Supercooled Liquid Region," Materials Transactions, 41(9), 1998, pp. 1256-1262. [28]P. Sharma, H. Kimura, A. Inoue, E. Arenholz, J. H. Guo, "Temperature and thickness driven spin-reorientation transition in amorphous Co-Fe-Ta-B thin films," Physical Review B, 73(5), 2006, p. 052401. [29]J. C. Huang, J. P. Chu, J. S. C. Jang, "Recent progress in metallic glasses in Taiwan," Intermetallics, 17(12), 2009, pp. 973-987. [30]H. S. Chen, C. E. Miller, "A Rapid Quenching Technique for the Preparation of Thin Uniform Films of Amorphous Solids," Review of Scientific Instruments, 41(8), 1970, pp. 1237-1238. [31]H. H. Liebermann, C. D. Graham, "Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions," IEEE Transactions on Magnetics, 12(6), 1976, pp. 921-923. [32]吳學陞, "新興材料-塊狀非晶質金屬材料," 工業材料, 149, 1999, pp. 154-159. [33]A. J. Drehman, A. L. Greer, "Kinetics of crystal nucleation and growth in Pd40Ni40P20 glass," Acta Metallurgica, 32(3), 1984, pp. 323-332. [34]A. Inoue, T. Zhang, T. Masumoto, "Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region," Materials Transactions, JIM, 30, 1989, pp. 965-972. [35]A. Inoue, "High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates," Materials Transactions, JIM, 36(7), 1995, pp. 866-875. [36]A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, "Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Structure Produced by a High-Pressure Die Casting Method," Materials Transactions, JIM, 33, 1992, pp. 937-945. [37]A. Inoue, T. Zhang, T. Masumto, "Amorphous Zr-Al-TM (TM=Co, Ni, Cu) Alloys with Significant Supercooled Liquid Region of Over 100 K," Materials Transactions, JIM, 32, 1991, pp. 1005-1008. [38]A. Inoue, N. Nishiyama, H. Kimura, "Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter," Materials Transactions Jim, 38(2), 1997, pp. 179-183. [39]惠希東、陳國良, 塊體非晶合金. 北京:化學工業出版社, 2007. [40]A. Inoue, T. Zhang, A. Takeuchi, "Ferrous and Nonferous Bulk Amorphous Alloys," Materials Science Forum, 269-272, 1998, pp. 855-864. [41]A. Inoue, A. Takeuchi, T. Zhang, "Ferromagnetic Bulk Amorphous Alloys," Materials Science Forum, 29(7), 1998, pp. 1779-1793. [42]F. Q. Guo, S. J. Poon, G. J. Shiflet, "CaAl-based bulk metallic glasses with high thermal stability," Applied Physics Letters, 84(1), 2004, p. 37. [43]L. Xia, D. Ding, S. T. Shan, Y. D. Dong, "The glass forming ability of Cu-rich Cu–Hf binary alloys," Journal of Physics: Condensed Matter, 18(15), 2006, pp. 3543-3548. [44]D. Xu, B. Lohwongwatana, G. Duan, W. L. Johnson, C. Garland, "Bulk metallic glass formation in binary Cu-rich alloy series – Cu100−xZrx (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass," Acta Materialia, 52(9), 2004, pp. 2621-2624. [45]L. Xia, W. H. Li, S. S. Fang, B. C. Wei, Y. D. Dong, "Binary Ni–Nb bulk metallic glasses," Journal of Applied Physics, 99(2), 2006, p. 026103. [46]R. Schulz, K. Samwer, W. L. Johnson, "Kinetics of phase separation in Cu50Zr50 metallic glasses," Journal of Non-Crystalline Solids, 61–62, Part 2, 1984, pp. 997-1002. [47]L. E. Tanner, R. Ray, "Phase separation in Zr-Ti-Be metallic glasses," Scripta Metallurgica, 14(6), 1980, pp. 657-662. [48]D. Turnbull, "Under what conditions can a glass be formed?," Contemporary Physics, 10(5), 1969, pp. 473-488. [49]Z. P. Lu, H. Tan, S. C. Ng, Y. Li, "The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses," Scripta Materialia, 42(7), 2000, pp. 667-673. [50]A. Inoue, T. Zhang, T. Masumoto, "Glass-forming ability of alloys," Journal of Non-Crystalline Solids, 156–158, Part 2, 1993, pp. 473-480. [51]T. A. Waniuk, J. Schroers, W. L. Johnson, "Critical cooling rate and thermal stability of Zr–Ti–Cu–Ni–Be alloys," Applied Physics Letters, 78(9), 2001, p. 1213. [52]A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, "High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems," Acta Materialia, 49(14), 2001, pp. 2645-2652. [53]Z. P. Lu, C. T. Liu, "A new glass-forming ability criterion for bulk metallic glasses," Acta Materialia, 50(13), 2002, pp. 3501-3512. [54]Z. P. Lu, Y. Li, S. C. Ng, "Reduced glass transition temperature and glass forming ability of bulk glass forming alloys," Journal of Non-Crystalline Solids, 270(1–3), 2000, pp. 103-114. [55]D. B. Miracle, "The efficient cluster packing model – An atomic structural model for metallic glasses," Acta Materialia, 54(16), 2006, pp. 4317-4336. [56]D. B. Miracle, "A structural model for metallic glasses," Nat Mater, 3(10), 2004, pp. 697-702. [57]C. T. Liu, L. Heatherly, J. A. Horton, D. S. Easton, C. A. Carmichael, J. L. Wright, J. H. Schneibel, M. H. Yoo, C. H. Chen, A. Inoue, "Test environments and mechanical properties of Zr-base bulk amorphous alloys," Metallurgical and Materials Transactions A, 29(7), 1998, pp. 1811-1820. [58]Z. Han, H. Yang, W. F. Wu, Y. Li, "Invariant critical stress for shear banding in a bulk metallic glass," Applied Physics Letters, 93(23), 2008, p. 231912. [59]S. X. Song, H. Bei, J. Wadsworth, T. G. Nieh, "Flow serration in a Zr-based bulk metallic glass in compression at low strain rates," Intermetallics, 16(6), 2008, pp. 813-818. [60]H. Bei, S. Xie, E. P. George, "Softening Caused by Profuse Shear Banding in a Bulk Metallic Glass," Physical Review Letters, 96(10), 2006, p. 105503. [61]C. L. Chiang, J. P. Chu, F. X. Liu, P. K. Liaw, R. A. Buchanan, "A 200 nm thick glass-forming metallic film for fatigue-property enhancements," Applied Physics Letters, 88(13), 2006, p. 131902. [62]J. P. Chu, C. T. Liu, T. Mahalingam, S. F. Wang, M. J. O’Keefe, B. Johnson, C. H. Kuo, "Annealing-induced full amorphization in a multicomponent metallic film," Physical Review B, 69(11), 2004, p. 113410. [63]S. Ningshen, U. Kamachi Mudali, R. Krishnan, B. Raj, "Corrosion behavior of Zr-based metallic glass coating on type 304L stainless steel by pulsed laser deposition method," Surface and Coatings Technology, 205(15), 2011, pp. 3961-3966. [64]Y. Matsumoto, M. Hiraoka, M. Katayama, S. Hata, M. Fukuhara, T. Wada, H. Kimura, A. Inoue, "In situ analysis of the thermal behavior in the Zr-based multi-component metallic thin film by pulsed laser deposition combined with UHV-laser microscope system," Materials Science and Engineering: B, 148(1–3), 2008, pp. 179-182. [65]A. Kobayashi, T. Kuroda, H. Kimura, A. Inoue, "Effect of spraying condition on property of Zr-based metallic glass coating by gas tunnel type plasma spraying," Materials Science and Engineering: B, 173(1–3), 2010, pp. 122-125. [66]F. X. Liu, P. K. Liaw, W. H. Jiang, C. L. Chiang, Y. F. Gao, Y. F. Guan, J. P. Chu, P. D. Rack, "Fatigue-resistance enhancements by glass-forming metallic films," Materials Science and Engineering: A, 468–470(0), 2007, pp. 246-252. [67]P.-S. Chen, H.-W. Chen, J.-G. Duh, J.-W. Lee, J. Shian-Ching Jang, "Mechanical and thermal behaviors of nitrogen-doped Zr-Cu-Al-Ag-Ta––An alternative class of thin film metallic glass," Applied Physics Letters, 101(18), 2012, p. 181902. [68]P.-S. Chen, H.-W. Chen, J.-G. Duh, J.-W. Lee, J. S.-C. Jang, "Characterization of mechanical properties and adhesion of Ta–Zr–Cu–Al–Ag thin film metallic glasses," Surface and Coatings Technology, 231, 2013, pp. 332-336. [69]W. C. Oliver, G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of Materials Research, 7(06), 1992, pp. 1564-1583. [70]TriboScope User Manual: Hysitron Inc, 2002. [71]M. Odén, C. Ericsson, G. Håkansson, H. Ljungcrantz, "Microstructure and mechanical behavior of arc-evaporated Cr–N coatings," Surface and Coatings Technology, 114(1), 1999, pp. 39-51. [72]P. o. c. f. t. Coating (CVD, Verein Deutscher Ingenieure Normen, VDI 3198, VDI-Verlag, Dusseldorf, 1991. [73]H. Jehn, G. Reiners, N. Siegel, D. I. f. r. Normung, Charakterisierung dünner Schichten. Berlin: Beuth Verlag, 1993. [74]A. Takeuchi, A. Inoue, "Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element," Materials Transactions, 46(12), 2005, pp. 2817-2829. [75]C. A. Schuh, T. G. Nieh, "A nanoindentation study of serrated flow in bulk metallic glasses," Acta Materialia, 51(1), 2003, pp. 87-99.
|