參考文獻
(1)Kumar, A. S.; Mody, K.; Jha, B. Bacterial exopolysaccharides – a perception. J. Basic Microbiol. 2007, 47, 103-117.
(2)Liu, J.; Luo, J.; Ye, H.; Sun, Y.; Lu, Z. X.; Zeng, X. X. Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr. Polym. 2009, 78, 275-281.
(3)Wang, S. L.; Yeh, P. Y. Production of a surfactant- and solvent- stable alkaliphilic protease by bioconversion of shrimp shell wastes fermented by Bacillus subtilis TKU007. Process Biochem. 2006, 41, 1545-1552.
(4)Najafi, A. R.; Rahimpour, M. R.; Jahanmiri, A. H.; Roostaazad, R.; Arabian, D.; Soleimani, M.; Jamshidnejad, Z. Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iranian oil well. Colloids Surf., B: Biointerfaces 2011, 82, 33-39.
(5)Lu, F. X.; Lu, Z. X.; Bie, X. M.; Yao, Z. Y.; Wang, Y. F.; Lu, Y. P.; Guo, Y. Purification and characterization of a novel anticoagulant and fibrinolytic enzyme produced by endophytic bacterium Paenibacillus polymyxa EJS-3. Thromb. Res. 2010, 126, e349-e355.
(6)Nielsen, P.; Sorensen, J. Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol. Ecol. 1997, 22, 183-192.
(7)Choi, K. K.; Park, C. W.; Kim, S.Y.; Lyoo, W. S.; Lee, S. H.; Lee, J. W. Polyvinyl alcohol degradation by Microbacterium barkeri KCCM 10507 and Paeniblacillus amylolyticus KCCM 10508 in dyeing wastewater. J. Microbiol. Biotechnol. 2004, 14, 1009-1013.
(8)Konishi, J.; Maruhashi, K. 2-(2''-Hydroxyphenyl)benzene sulfinate desulfinase from the thermophilic desulfurizing bacterium Paenibacillus sp. strain A11-2: purification and characterization. Appl. Microbiol. Biotechnol. 2003, 62, 356-361.
(9)Raza, W.; Makeen, K.; Wang, Y.; Xu, Y.; Qirong, S. Optimization, purification, characterization and antioxidant activity of an extracellular polysaccharide produced by Paenibacillus polymyxa SQR-21. Bioresour. Technol. 2011, 102, 6095-6103.
(10)Ghojavand, H.; Vahabzadeh, F.; Roayaei, E.; Shahraki, A. K. Production and properties of a biosurfactant obtained from a member of the Bacillus subtilis group(PTCC 1696). J. Colloid Interface Sci. 2008, 324, 172-176.
(11)Lee, S. C.; Lee, S. J.; Kim, S. H.; Park, I. H.; Lee, Y. S.; Chung, S. Y.; Choi, Y. L. Characterization of new biosurfactant produced by Klebsiella sp. Y6-1 isolated from waste soybean oil. Bioresour. Technol. 2008, 99, 2288-2292.
(12)Baek, K. H.; Kim, H. S.; Moon, S. H.; Lee, I. S.; Oh, H. M.; Yoon, B. D. Effects of soil types on the biodegradation of crude oil by Nocardia sp. H17-1. J. Microbiol. Biotechnol. 2004, 14, 901-905.
(13)Cirigliano, M. C.; Carman, G. M. Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol. 1985, 50, 846-850.
(14)Gerhardt, P.; Costilow, R. N.; Krieg, N. R.; Murray, R. G. E.; Nester, E. W.; Phillips, G. B.; Wood, W. A. Manual of methods for general bacteriology, American Society for Microbiology, NY, USA, 1981.
(15)Mulligan, C. N. Environmental applications for biosurfactants. Environ. Pollut. 2005, 133, 183-198.
(16)Mulligan, C. N.; Gibbs, B. F. Factors influencing the economics of biosurfactants. In Biosurfactants, Production, Properties, Applications. Kosaric, N. (Ed.): Marcel Dekker, New York, 1993, 329-371.
(17)Rosen, M. J. Surfactants and interfacial phenomena. Wiley- Interscience, New York, 1978, 174.
(18)Agarwal, P.; Sharma, D. K. Studies on the production of biosurfactant for the microbial enhanced oil recovery by using bacteria isolated from oil contaminated wet soil. Pet. Sci. Technol. 2009, 27, 1880-1893.
(19)Holden, T. How to select hazardous waste treatment technologies for soils and sludges. Pollution Technol. Rev. 1989, 163.
(20)Thavasi, R.; Nambaru, V. R. M. S.; Jayalakshmi, S.; Balasubramanian, T.; Banat, I. M. Biosurfactant production by Azotobacter chroococcum isolated from the marine environment. Mar. Biotechnol. 2009, 11, 551-556.
(21)Desai, J. D.; Banat, I. M. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 1997, 61, 47-64.
(22)Zajic, J. E.; Guignard, H.; Gerson, D. F. Properties and biodegradation of a bioemulsifier from Corynebacterium hydrocarboclastus. Biotechnol. Bioeng. 1977, 19, 1303-1320.
(23)Rosen, M. J. Surfactants and interfacial phenomena 3rd ed. John Wiley & Sons, Inc. 2004, USA.
(24)Makkar, R. S.; Cameotra, S. S. Biosurfactant production by microorganisms on unconventional carbon sources. J. Surfactants Deterg. 1999, 2, 237-241.
(25)Angelova, B.; Schmauder, H.-P. Lipophilic compounds in biotechnology-interactions with cells and technological problems. J. Biotechnol. 1999, 67, 13-32.
(26)Bodour, A. A.; Drees, K. P.; Maier, R. M. Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl. Environ. Microbiol. 2003, 69, 3280-3287.
(27)Ilori, M. O.; Amobi, C. J.; Odocha, A. C. Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere 2005, 61, 985-992.
(28)Bento, F. M.; Camargo, F. A. de O.; Okeke, B. C.; Frankenberger, W. T. Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol. Res. 2005, 160, 249-255.
(29)Olivera, N. L.; Nievas, M. L.; Lozada, M.; del Prado, G..; Dionisi, H. M.; Sineriz, F. Isolation and characterization of biosurfactant- producing Alcanivorax strains: hydrocarbon accession strategies and alkane hydroxylase gene analysis. Res. Microbiol. 2009, 160, 19-26.
(30)Das, P.; Mukherjee, S.; Sen, R. Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J. Appl. Microbiol. 2008, 104, 1675-1684.
(31)Yakimov, M. M.; Golyshin, P. N.; Lang, S.; Moore, E. R. B.; Abraham, W.-R.; Lunsdorf, H.; Timmis, K. N. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int. J. Syst. Bacteriol. 1998, 48, 339-348.
(32)Banat, I. M.; Makkar, R. S. ; Cameotra, S. S. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 2000, 53, 495-508.
(33)Poli, A.; Kazak, H.; Gurleyendağ, B.; Tommonaro, G.; Pieretti, G.; Oner, E. T.; Nicolaus, B. High level synthesis of levan by a novel Halomonas species growing on defined media. Carbohydr. Polym. 2009, 78, 651-657.
(34)Iyer, A.; Mody, K.; Jha, B. Emulsifying properties of a marine bacterial exopolysaccharide. Enzyme Microb. Technol. 2006, 38, 220-222.
(35)Martinez-Canovas, M. J. ; Quesada, E.; Martinez-Checa, F.; Bejar, V. A taxonomic study to establish the relationship between exopolysaccharide-producing bacterial strains living in diverse hypersaline habitats. Curr. Microbiol. 2004, 48, 348-353.
(36)Mahapatra, S.; Banerjee, D. Evaluation of in vitro antioxidant potency of exopolysaccharide from endophytic Fusarium solani SD5. Int. J. Biol. Macromol. 2013, 53, 62-66.
(37)Lee, S. Y.; Park, S. J.; Park, J. P.; Lee, Y.; Lee, S. H. Economic aspects of biopolymer production. Biopolymers, 2003, 10, 307-337.
(38)Nwodo, U. U.; Green, E.; Okoh, A. I. Bacterial Exopolysaccharides: Functionality and Prospects. Int. J. Mol. Sci. 2012, 13, 14002-14015.
(39)Roger, O.; Kervarec, N.; Ratiskol, J.; Colliec-Jouault, S.; Chevolot, L. Structural studies of the main exopolysaccharide produced by the deep-sea bacterium Alteromonas infernos. Carbohydr. Res. 2004, 339, 2371-2380.
(40)Raguenes, G. H. C.; Peres, A.; Ruimy, R.; Pignet, P.; Christen, R.; Loaec, M.; Rougeaux, H.; Barbier, G.; Guezennec, J. G. Alteromonas infernus sp. nov., a new polysaccharide-producing bacterium isolated from a deep-sea hydrothermal vent. J. Appl. Microbiol. 1997, 82, 422-430.
(41)Maugeri, T. L.; Gugliandolo, C.; Caccamo, D.; Panico, A.; Lama, L.; Gambacorta, A.; Nicolaus, B. A halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharide. Biotechnol. Lett. 2002, 24, 515-519.
(42)Bouchotroch, S.; Quesada, E.; del Moral, A.; Llamas, I.; Bejar, V. Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol. 2001, 51, 1625-1632.
(43)Poli, A.; Moriello, V. S.; Esposito, E.; Lama, L.; Gambacorta, A.; Nicolaus, B. Exopolysaccharide production by a new Halomonas strain CRSS isolated from saline lake Cape Russell in Antarctica growing on complex and defined media. Biotechnol. Lett. 2004, 26, 1635-1638.
(44)Arias, S.; del Moral, A.; Ferrer, M. R.; Tallon, R.; Quesada, E.; Bejar, V. Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 2003, 7, 319-326.
(45)Mata, J. A.; Bejar, V.; Llamas, I.; Arias, S.; Bressollier, P. ; Tallon, R. ; Urdaci, M. C.; Quesada, E. Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Res. Microbiol. 2006, 157, 827-835.
(46)Gonzalez-Domenech, C. M.; Martinez-Checa, F.; Quesada, E.; Bejar, V. Halomonas cerina sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol. 2008, 58, 803-809.
(47)Matsunaga, T.; Sudo, H.; Takemasa, H.; Wachi, Y.; Nakamura, N. Sulfated extracellular polysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytia immobilized on light- diffusing optical fibers. Appl. Microbiol. Biotechnol. 1996, 45, 24-27.
(48)Seifried, H. E.; Anderson, D. E.; Fisher, E. I.; Milner, J. A. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem. 2007, 18, 567-579.
(49)Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44-84.
(50)Grice, H. C. Safety evaluation of butylated hydroxyanisole from the perspective of effects on forestomach and oesophageal squamous epithelium. Food Chem. Toxicol. 1988, 26, 717-723.
(51)Luo, D.; Fang, B. Structural identification of ginseng polysaccharides and testing of their antioxidant activities. Carbohydr. Polym. 2008, 72, 376-381.
(52)Sun, C.; Wang, J. W.; Fang, L.; Gao, X. D.; Tan, R. X. Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108. Life Sci. 2004, 75, 1063-1073.
(53)Yu, R,; Yang, W.; Song, L.; Yan, C.; Zhang, Z.; Zhao, Yu. Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris. Carbohydr. Polym. 2007, 70, 430–436.
(54)Deshpande, M. V. Enzymatic degradation of chitin and its biological applications. J. Sci. Ind. Res. 1986, 45, 273-281.
(55)Ohtakara, A.; Matsunaga, H.; Mitsutomi, M. Action pattern of Streptomyces griseus chitinase on partially N-Acetylated chitosan. Agric. Biol. Chem. 1990, 54, 3191-3199.
(56)Wang, S. L.; Kao, T. Y.; Wang, C. L.; Yen, Y. H.; Chern, M. K.; Chen, Y. H. A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for β-chitin preparation. Enzyme Microb. Technol. 2006, 39, 724-731.
(57)Kumar, M. N. V. R. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1-27.
(58)Tamai, Y.; Miyatake, K.; Okamoto, Y.; Takamori, Y.; Sakamoto, K.; Minami, S. Enhanced healing of cartilaginous injuries by N-acetyl-D-glucosamine and glucuronic acid. Carbohydr. Polym. 2003, 54, 251-262.
(59)Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350-356.
(60)Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426-428.
(61)Staub, A. M. Removal of protein-Sevag method. Methods in Carbohydrate Chemistry 1965, 5, 5-6.
(62)Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food. Chem. 1992, 40, 945-948.
(63)Yen, G. C.; Hsieh, C. L. Antioxidant activity of extracts from Du-zhong(Eucommia ulmoides) toward various lipid peroxidation models in vitro. J. Agric. Food. Chem. 1998, 46, 3952-3957.
(64)Oyaizu, M. Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics 1986, 44, 307-315.
(65)曾詩純。2013。Paenibacillu mucilaginosus TKU032生產生物界面活性劑與胞外多醣之條件與特性分析:90-118。淡江大學化學學系碩士班碩士論文。台北。(66)Freitas, F.; Alves, V. D.; Pais, J.; Carvalheira, M.; Costa, N.; Oliveira, R.; Reis, M. A. M. Production of a new exopolysaccharide (EPS) by Pseudomonas oleovorans NRRL B-14682 grown on glycerol. Process Biochem. 2010, 45, 297-305.
(67)Wang, C. L.; Huang, T. H.; Liang, T. W.; Fang, C. Y.; Wang, S. L. Production and characterization of exopolysaccharides and antioxidant from Paenibacillus sp. TKU023. New Biotechnol. 2011, 28, 559-565.
(68)Liang, T. W.; Wu, C. C.; Cheng, W. T.; Chen, Y. C.; Wang, C. L.; Wang, I. L.; Wang, S. L. Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Appl. Biochem. Biotechnol. 2014, 172, 933-950.
(69)Mahapatra, S.; Banerjee, D. Optimization of a bioactive exopolysaccharide production from endophytic Fusarium solani SD5. Carbohydr. Polym. 2013, 97, 627-634.
(70)Onbaslia, D.; Aslim, B. Effects of some organic pollutants on the exopolysaccharides (EPSs) produced by some Pseudomonas spp. strains. J. Hazard. Mater. 2009, 168, 64-67.
(71)Scalzo, R. L. Organic acids influence on DPPH scavenging by ascorbic acid. Food Chem. 2008, 107, 40-43.
(72)Wang, S. L.; Liou, J. Y.; Liang, T. W. ; Liu, K. C. Conversion of squid pen by using Serratia sp. TKU020 fermentation for the production of enzymes, antioxidants, and N-acetyl chitooligosaccharides. Process Biochem. 2009, 44, 854-861.
(73)Wang, S. L.; Chen, T. R.; Liang, T. W.; Wu, P. C. Conversion and degradation of shellfish wastes by Bacillus cereus TKU018 fermentation for the production of chitosanases and bioactive materials. Biochem. Eng. J. 2009, 48, 111-117.
(74)Wang, S. L.; Liu, K. C.; Liang, T. W.; Kuo, Y. H.; Wang, C. Y. In vitro antioxidant activity of liquor and semi-purified fractions from fermented squid pen biowaste by Serratia ureilytica TKU013. Food Chem. 2010, 119, 1380-1385.
(75)Wang, S. L.; Chao, C. H.; Liang, T. W.; Chen, C. C. Purification and characterization of protease and chitinase from Bacillus cereus TKU006 and conversion of marine wastes by these enzymes. Mar. Biotechnol. 2009, 11, 334-344.
(76)Wang, S. L.; Peng, J. H.; Liang, T. W.; Liu, K. C. Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydr. Res. 2008, 343, 1316-1323.
(77)Moktan, B.; Saha, J.; Sarkar, P. K. Antioxidant activities of soybean as affected by Bacillus-fermentation to kinema. Food Res. Int. 2008, 41, 586-593.
(78)Gulcina, I.; Kufrevioğlu, O. İ.; Oktayb, M.; Buyukokuroğlu, M. E. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J. Ethnopharmacol. 2004, 90, 205-215.
(79)Duh, P. D.; Yen, G. C. Antioxidative activity of three herbal water extracts. Food Chem. 1997, 60, 639-645.