|
參考資料 1.Bereiter-Hahn, J. and M. VOTH, Metabolie Control of Shape and Strueture of Mitoehondria in situ. Biol Cell, 1983. 47: p. 309-22. 2.Green, D.R., Apoptotic Pathways: The Roads to Ruin. Cell, 1998. 94(6): p. 695-98. 3.Haslbrunner, E., H. Tuppy, and G. Schatz, Deoxyribonucleic acid associated with yeast mitochondria. Biochemical and Biophysical Research Communications, 1964. 15(2): p. 127-32. 4.Man, P.Y.W., D.M. Turnbull, and P.F. Chinnery, Leber hereditary optic neuropathy. J Med Genet, 2002. 39: p. 162-8. 5.Gomes, A.P., et al., Declining NAD(+) Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging. Cell, 2013. 155(7): p. 1624-38. 6.Nobelprize.org. The Nobel Prize in Physiology or Medicine 2009. Available from: http://www.nobelprize.org/nobel_prizes/medicine/laureates/2009/. 7.Madiraju, A.K., et al., Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature, 2014. 510(7506): p. 542-6. 8.Otsuga, D., et al., The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J Cell Biol, 1998. 143(2): p. 333-49. 9.Bleazard, W., et al., The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol, 1999. 1(5): p. 298-304. 10.Westermann, B., Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol, 2010. 11(12): p. 872-84. 11.Frank, S., et al., The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell, 2001. 1(4): p. 515-25. 12.Karbowski, M., et al., Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol, 2002. 159(6): p. 931-8. 13.Olichon, A., et al., Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem, 2003. 278(10): p. 7743-6. 14.Gottlieb, E., OPA1 and PARL keep a lid on apoptosis. Cell, 2006. 126(1): p. 27-9. 15.Wu, S., et al., Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J, 2011. 278(6): p. 941-54. 16.Cooper, K.F., et al., Stress-induced nuclear-to-cytoplasmic translocation of cyclin C promotes mitochondrial fission in yeast. Dev Cell, 2014. 28(2): p. 161-73. 17.Breckenridge, D.G., et al., Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol, 2003. 160(7): p. 1115-27. 18.Bakker, B.M., et al., The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol, 2000. 182(17): p. 4730-7. 19.Bakker, B.M., et al., Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev, 2001. 25(1): p. 15-37. 20.陳宏仁 淡江大學化學研究所碩士論文. 2010. 21.呂毓鴻 淡江大學化學研究所碩士論文. 2013. 22.高翊傑 淡江大學化學研究所碩士論文. 2013. 23.Ozcan, U., Mitofusins: Mighty Regulators of Metabolism. Cell, 2013. 155(1): p. 17-8. 24.邱明諄, 啤酒酵母菌醇類去氫酶3 與4之選殖、過度表現、純化及動力學分析. 2005. 25.古佳弘, 過度表現ADH3p對啤酒酵母粒線體形態上的影響. 2010. 26.Qian, S.B., et al., mTORC1 links protein quality and quantity control by sensing chaperone availability. J Biol Chem, 2010. 285(35): p. 27385-95. 27.Wei, Y. and X.F. Zheng, Nutritional control of cell growth via TOR signaling in budding yeast. Methods Mol Biol, 2011. 759: p. 307-19. 28.Sopko, R., et al., Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell, 2006. 21(3): p. 319-30. 29.McGovern, P.E., et al., Fermented beverages of pre- and proto-historic China. Proceedings of the National Academy of Sciences, 2004. 101(51): p. 17593-17598. 30.Hodgson, P.E., Nuclear Power and the Energy Crisis. Modern Age, 2008. 50(3): p. 238-246. 31.Ikehata, H. and T. Ono, The mechanisms of UV mutagenesis. J Radiat Res, 2011. 52(2): p. 115-25. 32.Alper, H., et al., Engineering Yeast Transcription Machinery for Improved Ethanol Tolerance and Production. Science, 2006. 314: p. 1565-1568. 33.Lin, Y., et al., Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass and Bioenergy, 2012. 47: p. 395-401. 34.Novo, M., et al., Improved fermentation kinetics by wine yeast strains evolved under ethanol stress. LWT - Food Science and Technology, September 2014. 58(1): p. 166-72. 35.Essen, L.O., Photolyases and cryptochromes: common mechanisms of DNA repair and light-driven signaling? Curr Opin Struct Biol, 2006. 16(1): p. 51-9. 36.Essen, L.O. and T. Klar, Light-driven DNA repair by photolyases. Cell Mol Life Sci, 2006. 63(11): p. 1266-77. 37.Faraji, S. and A. Dreuw, Physicochemical mechanism of light-driven DNA repair by (6-4) photolyases. Annu Rev Phys Chem, 2014. 65: p. 275-92. 38.Castellari, M.V., A.; Spinabelli, U.; Galassi, S.; Amati, A., An improved HPLC method for the analysis of organic acids, carbohydrates, and alcohols in grape musts and wines. Journal of Liquid Chromatography & Related Technologies, 2000. 23(13): p. 2047-56. 39.Gerchman, Y., et al., A simple rapid gas-chromatography flame-ionization-detector (GC-FID) method for the determination ofethanol from fermentation processes. African Journal of Biotechnology, 2012. 11(15): p. 3612-16. 40.Williams, M.B. and H.D. Reese, Colorimetric Determination of Ethyl Alcohol. Analytical Chemistry, 1950. 22(12): p. 1556-61. 41.pGEMR-T and pGEMR-T Easy Vector Systems. Promega.
|