|
1.Aloi LE, Cherry RS. 1996. Cellular response to agitation characterized by energy dissipation at the impeller tip. Chem Eng Sci 51:1523–1529. 2.Apel J, Paul R, Klaus S et al. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif Organs 2001; 25(5): 341-347. 3.Arora D, Behr M, and Pasquali M. A tensor-based measure for estimating blood damage. Artif Organs 2004; 28(11): 1002-1015. 4.Arora D, Behr M, and Pasquali M. Hemolysis estimation in a centrifugal blood pump using a tensor-based measure. Artif Organs 2006; 30(7):539-547. 5.Arora D, Behr M, Coronado-Matutti O, Pasquali M. Estimation of hemolysis in centrifugal blood pumps using morphology tensor approach. Computational Fluid and Solid Mechanics 2005; 578-582. 6.Arvand AM, Hormes M, Reul A. A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump. Artif Organs 2005; 29:531-40. 7.Behbahani M, Behr M, Hormes M, Steinseifer U, Arora D, Pasquali M. A review of computational fluid dynamics analysis of blood pumps. Eur. J. Appl. Math. 2009; 20:369-97. 8.Bentley BJ, and Leal LG. A computer-controlled four-roll mill for investigations of particle and drop dynamics in two-dimensional linear shear flows. J. Fluid Mech. 1986; 167:219-240. 9.Bentley BJ, and Leal LG. An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. J. Fluid Mech. 1986; 167:241-283. 10.Bluestein D, Li YM, and Krukenkamp IB. Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 2002; 35(12): 1533-1540. 11.Bluestein M, Mockros LF. 1969. Hemolytic effects of energy dissipation in flowing blood. Med Biol Eng 7:1–6. 12.Chan WK, Wong YW, Ding Y et al. Numerical investigation of the effect of blade geometry on blood trauma in a centrifugal blood pump. Artif Organs 2002; 26(9):785-793. 13.Chang KS, and Olbright WL. Experimental studies of the deformation of a synthetic capsule in extensional flow. J. Fluid Mech. 1993; 250:587-608. 14.Chang KS, and Olbright WL. Experimental studies of the deformation and breakup of a synthetic capsule in steady and unsteady simple shear flow. J. Fluid Mech. 1993; 250:609-633. Croughan MS, Wang DIC. 1989. Growth and death in overagitated microcarrier cell cultures. Biotechnol Bioeng 33:731–744. 15.De WD and Verdonck P. Numerical calculation of hemolysis levels in peripheral hemodialysis cannulas. Artif Organs 2002; 26(7):576-582. 16.Dhaene M, Gulbis B, Lietaer N, et al. Red blood cell destruction in single-needle dialysis. Clin. Nephrol 1989; 31:327-31. 17.Down LA, Papavassiliou DV, O’Rear EA. Significance of extensional stresses to red blood cell lysis in a shearing flow. Ann. Biomed. Eng. 2011; 39(6):1632-42. 18.Farinas MI, Garon A, Lacasse D, N’dri D. Asymptotically consistent numerical approximation of hemolysis. J. Biomech. Eng. 2006; 128:688-696. 19.Fife JP, Derksen RC, Ozkan HE, Grewal PS, Chalmers JJ. 2004. Evaluation of a contraction flow field on hydrodynamic damage to entompathogenic nematodes—A biological pest control agent. Biotechnol Bioeng 86(1): 11: 96–107. 20.Figlio RS, and Mueller TJ. On the hemolytic and thrombogenic potential of occluder prosthetic heart valves from in-vitro measurements. J.Biomech. 1981;103:83-90. 21.Fischer T and Schmid-Schonbein H . Tank tread motion of red cell membranes in viscometric flow: behavior of intracellular and extracellular markers(with film). Blood Cells. 1997; 3:351-365. 22.Garcia-Briones MA, Chalmers JJ. 1994. Flow parameters associated with hydrodynamic cell injury. Biotechnol Bioeng 44:1089–1098. 23.Garon A and Farinas MI. Fast three-dimensional numerical hemolysis approximation. Artif Organs 2004; 28(11): 1016-1025. 24.Giersiepen M, Wurzinger LJ, Opitz R, Reul H. Estimation of shear stress-related blood damage in heart valve prostheses—in vitro comparison of 25 aortic valves. Int J Artif Organs 1990; 13:300–6. 25.Goubergrits L and Affeld K. Numerical estimation of blood damage in artificial organs. Artif Organs 2004; 28(5):499-507. 26.Goubergrits L, Osman J, Affeld K , and Kertzscher U. First experience with an FDA critical path initiative: CFD and hemolysis. The International Journal of Artificial Organs 2009; 32(7):398. 27.Gregoriades N, Clay J, Ma N, Koelling K, Chalmers JJ. Cell damage of microcarrier cultures as a function of local energy dissipation created by a rapid extensional flow. Biotechnol Bioeng 2000; 69(2):171-182. 28.Gregoriades N, Clay J, Ma Ningning, Koelling K, Chalmers J. 2000. Cell damage of microcarrier cultures as a function of local energy dissipation created by a rapid extensional flow. Biotechnol Bioeng 69:171– 182. 29.Grigioni M, Caprari P, Tarzia A, and D''Avenio G. Prosthetic heart valves'' mechanical loading of red blood cells in patients with hereditary membrane defects. J. Biomech. 2005 38(8): 1557-1565. 30.Gu L and Smith WA. Evaluation of computational models for hemolysis estimation. ASAIO J. 2005; 202-207. 31.Hariharan P, Giarra M, Reddy V, et al. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. ASME J. Biomech. Eng. 2011; 133/ 041002-1-13. 32.Hellums JD, Brown CH. Blood cell damage by mechanical forces. In: Cardiovascular Flow Dynamics and Measurements. Edited by NHC Hwang and NA Normann. Baltimore: University Park Press 1977. 33.Herbertson LH, Lu Q, Malinauskas A. A single-pass orifice system to assess red blood cell fragility. ASAIO J. 2010; 56(2):86. 34.Heuser G, Opitz R. A Couette viscometer for short time shearing of blood. Biorheology 1980; 17:17–24. 35.Hu W, Gladue R, Hansen J, Wojnar C, Chalmers JJ. 2007. The sensitivity of the Dinoflagellate Crypthecodinium cohnii to transient hydrodynamic forces. Biotechnol Progress 23:1355–1362. 36.Kawahito K, Nose’ Y. Hemolysis in different centrifugal pumps. Artif. Organs 1997; 21:323-6. 37.Keshaviah P. Hemolysis in the accelerated flow region of an abrupt contraction. Doctoral Dissertation, University of Minnesota, 1974. 38.Lee SS, Yim Y, Ahn KH, Lee SJ. Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomed Microdevices 2009; 11:1021-7. 39.Leverett LB, Hellums JD, Alfrey CP, Lynch EC. Red blood cell damage by shear stress. Biophys J. 1972; 12:257–73. 40.Luckras H, Woods M, Large SR. And hemolysis goes on: ventricular assist device in combination with veno-venous hemofiltration. Ann. Thorac. Surg. 2002; 73:546-8. 41.Ma N, Koelling K, Chalmers JJ. 2002. The fabrication and use of a transient contractional flow device to quantify the sensitivity of mammalian and insect cells to hydrodynamic forces. Biotechnol Bioeng 80:428–437. 42.McQueen A, Bailey JE. 1989. Influence of serum level, cell line, flow type, and viscosity on flow-induced lysis of suspended mammalian cells. Biotechnol Lett 11:531–536. 43.McQueen A, Melhoc E, Bailey JE. 1987. Flow effects on the viability and lysis of suspended mammalian cells. Biotechnol Lett 9:831–836. 44.Mitoh A, Yano T, Sekine K et al. Computational fluid dynamics analysis of an intra-cardiac axial flow pump. Artif Organs 2003; 27(1):34-40. 45.Mollet M, Godoy-Silva R, Berdugo C, Chalmers JJ. 2007. Acute hydrodynamic forces and apoptosis: A complex question. Biotechnol Bioeng 98(4):772–788. 46.Mollet M, Godoy-Silva R, Berdugo C, Chalmers JJ. 2008. Computer simulations of the engergy dissipation rate in a fluorescence-activated cell sorter: Implications to cells. Biotechnol Bioeng 100(2):260–272. 47.Mollet M, Ma N, Zhao Y, Brodkey R, Taticek R, Chalmers J. 2004. Bioprocess equipment: Characterization of energy dissipation rate and its potential to damage cells. Biotechnol Progress 20:1437–1448. 48.Nevaril CG, Lynch EC, Alfrey CP, Hellums JD. Erythrocyte damage and destruction induced by shearing stress. J. Lab. Clin. Med. 1968; 71: 784-790. 49.Paul R, Apel J, Klaus S, Schugner F, Schwindke P, and Reul H. Shear Stress Related Blood Damage in Laminar Couette Flow. Artif Organs 2003; 27(6):517–529. 50.Polaschegg HD Red blood cell damage from extracorporeal circulation in hemodialysis. Semin. Dial. 2009; 22:524-31. 51.Raisky F, Gauthier C, Marchal A, Blum D. Haemolyzed sample responsibility of short catheters.Ann. Biol. Clin. Paris 1994; 52:523-527. 52.Rooney JA. Hemolysis near an ultrasonically pulsating gas bubble. Science 1970; 169:869–71. 53.Song X, Throckmorton AL, Wood HG et al. Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif Organs 2003; 27(10):938-941. 54.Stewart S, Day S, Burgreen GW et al. Preliminary results of FDA’s “critical path” project to validate computational fluid dynamic methods used in medical device evaluation. ASAIO J. 2009; 55(2): 173. 55.Stewart S, Paterson EG, Burgreen GW et al., Assessment of CFD Performance in Simulations of an Idealized Medical Device: Results of FDA’s First Computational Interlaboratory Study, Cardiovascular Engineering and Technology. 2012; 3(2): 139-160. 56.Stewart S, Paterson EG, Burgreen GW et al., Turblence modeling as a source of error in FDA’s “critical path” interlaboratory computational study of flow in a nozzle model, ASAIO J. 2010; 56(2): 82. 57.Tsuji A, Tanabe M, Onishi K, et al. Intravascular hemolysis in aortic stenosis. Intern. Med. 2004;43:935-8 58.White FM. Viscous Fluid Flow. Third Edition. McGraw Hill. New York. 2006. 59.Williams AR, Hughes DE. Hemolysis near a transversely oscillating wire. Science 1970; 169:871–3. 60.Wurzinger LJ, Opitz R, Eckstein H. Mechanical bloodtrauma. An overview. Angeiologie 1986; 38:81–97. 61.Yano T, Sekine K, Mitoh A et al. An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis. Artif Organs 2003; 27(10): 920-925. 62.Zhao R, Antaki JF, Naik T, Bachman TN, Kameneva MV, Wu ZJ. Microscopic investigation of erythrocyte deformation dynamics. Biorheology 2006; 43:747-65.
|