|
[1] J. C. Bermond and J. Schonheim, G-decomposition of Kn, where G has four vertices or less, Discrete Math., 19 (1977), 113-120. [2] E. J. Billington, E. S. Yazici and C. C. Lindner, The triangle intersection problem for K4 − e designs, Utilitas Mathematica, 73 (2007), 3-21. [3] D. E. Bryant and C. A. Rodger, The Doyen–Wilson theorem extended to 5-cycles, J. Combin. Theory Ser. A, 68 (1994), 218–225. [4] D. E. Bryant and C.A. Rodger, On the Doyen–Wilson theorem for m-cycle systems, J. Combin. Des., 2 (1994), 253–271. [5] V. E. Castellana and M. E. Raines, Embedding extended Mendelsohn triple systems, Discrete Math., 252 (2002), 47–55. [6] Y. M. Chee, Steiner Triple Systems Intersecting in Pairwise Dis-joint Blocks, The Electronic J. of Combin., 11(2004), #R27. [7] C.J. Colbourn, J.H. Dinitz (Eds.), CRC Handbook of Combinatorial Designs, CRC Press Inc., Boca Raton, FL, 1996. [8] J. Doyen and R. M. Wilson, Embeddings of Steiner triple systems, Discrete Math., 5 (1973), 229–239. [9] G. L. Faro and A. Tripodi, The Doyen–Wilson theorem for kite systems, Discrete Math., 306 (2006), 2695–2701. [10] G. L. Faro and A. Tripodi, Embeddings of λ -fold kite systems, λ ≥ 2, Australas. J. Combin., 36 (2006), 143–150. [11] C. M. Fu and W. C. Huang, Kite-designs intersecting in pairwise disjoint blocks, Ars Combin., 94 (2010), 235-244. [12] H. L. Fu, C. C. Lindner and C.A. Rodger, The Doyen–Wilson theorem for minimum coverings with triples, J. Combin. Des., 5 (1997), 341–352. [13] H. L. Fu, C. C. Lindner and C.A. Rodger, Two Doyen–Wilson theorems for maximum packings with triples, Discrete Math., 178 (1998), 63–71. [14] H. L. Fu and C. C. Lindner, The Doyen–Wilson theorem for maximum packings of Kn with 4-cycles, Discrete Math., 183 (1998), 103–117. [15] H. Gao and J. H. Wang, Doyen–Wilson theorem for perfect hexagon triple systems, Discrete Math., 311 (2011), 1006–1014. [16] D. G. Hoffman and K.S. Kirkpatrick, Another Doyen–Wilson theorem, Ars Combin., 54 (1999), 87–96. [17] W. C. Huang and W. C. Yang, The Doyen–Wilson theorem for extended directed triple systems, Ars Combin., 84 (2007), 77–83. [18] T.P. Kirkman, On a problem in combinations, Cambridge and Dublin Math. Journal, 2 (1847 ), 191-204. [19] C. C. Lindner and A. Rosa, Construction of Steiner triple systems having a prescribed number of triples in common, Canad. J. Math., 27 (1975), 1166-1175. [20] C. C. Lindner and E. S. Yazici, The triangle intersection problem for Kite systems, Ars Combin., 75 (2005), 225-231. [21] C. C. Lindner and C. A. Rodger, Design theory, Boca Raton: CRC Press series on discrete mathematics and its applications, (1997). [22] M. E. Raines, A generalization of the Doyen–Wilson theorem for extended triple systems of all indices, Discrete Math., 202 (1999), 215–225. [23] D. R. Stinson, Combinatorial Designs Constructions and Analysis, Springer-Verlag, (2004). [24] J. H. Wang and H. Shen, Doyen–Wilson theorem for nested Steiner triple systems, J. Combin. Des., 12 (2004), 389–403. [25] J. H. Wang, Perfect hexagon triple systems with given subsystems, Discrete Math., 309 (2009), 2930–2933. [26] S. E. Zanati and C. A. Rodger, Blocking sets in G-design, Ars Combin., 35 (1993), 237-251.
|
| |