|
1.Cho, W.C., Nasopharyngeal carcinoma: molecular biomarker discovery and progress. Mol Cancer, 2007. 6: p. 1. 2.Chen, C.J., et al., Cancer epidemiology and control in Taiwan: a brief review. Jpn J Clin Oncol, 2002. 32 Suppl: p. S66-81. 3.Sun, L.M., et al., Trends in the incidence rates of nasopharyngeal carcinoma among Chinese Americans living in Los Angeles County and the San Francisco metropolitan area, 1992-2002. Am J Epidemiol, 2005. 162(12): p. 1174-8. 4.Niedobitek, G., A. Agathanggelou, and J.M. Nicholls, Epstein-Barr virus infection and the pathogenesis of nasopharyngeal carcinoma: viral gene expression, tumour cell phenotype, and the role of the lymphoid stroma. Semin Cancer Biol, 1996. 7(4): p. 165-74. 5.Spano, J.P., et al., Nasopharyngeal carcinomas: an update. Eur J Cancer, 2003. 39(15): p. 2121-35. 6.Shanmugaratnam, K., Histological typing of nasopharyngeal carcinoma. IARC Sci Publ, 1978(20): p. 3-12. 7.Ma, B.B. and A.T. Chan, Recent perspectives in the role of chemotherapy in the management of advanced nasopharyngeal carcinoma. Cancer, 2005. 103(1): p. 22-31. 8.Kong, L., et al., Neoadjuvant chemotherapy followed by concurrent chemoradiation for locoregionally advanced nasopharyngeal carcinoma: Interim results from 2 prospective phase 2 clinical trials. Cancer, 2013. 9.Dominguez, P.M. and C. Ardavin, Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol Rev, 2010. 234(1): p. 90-104. 10.Shortman, K. and S.H. Naik, Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol, 2007. 7(1): p. 19-30. 11.Banchereau, J., et al., Immunobiology of dendritic cells. Annu Rev Immunol, 2000. 18: p. 767-811. 12.Lanzavecchia, A. and F. Sallusto, Regulation of T cell immunity by dendritic cells. Cell, 2001. 106(3): p. 263-6. 13.Sreekumaran, E., et al., Loss of dendritic connectivity in CA1, CA2, and CA3 neurons in hippocampus in rat under aluminum toxicity: antidotal effect of pyridoxine. Brain Res Bull, 2003. 59(6): p. 421-7. 14.Nonaka, M., et al., Glycosylation-dependent interactions of C-type lectin DC-SIGN with colorectal tumor-associated Lewis glycans impair the function and differentiation of monocyte-derived dendritic cells. J Immunol, 2008. 180(5): p. 3347-56. 15.Geijtenbeek, T.B.H., et al., DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell, 2000. 100(5): p. 587-597. 16.Geijtenbeek, T.B.H., et al., Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell, 2000. 100(5): p. 575-585. 17.den Dunnen, J., S.I. Gringhuis, and T.B. Geijtenbeek, Dusting the sugar fingerprint: C-type lectin signaling in adaptive immunity. Immunol Lett, 2010. 128(1): p. 12-6. 18.Vicari, A.P., C. Caux, and G. Trinchieri, Tumour escape from immune surveillance through dendritic cell inactivation. Seminars in Cancer Biology, 2002. 12(1): p. 33-42. 19.den Dunnen, J., S.I. Gringhuis, and T.B. Geijtenbeek, Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunol Immunother, 2009. 58(7): p. 1149-57. 20.Stambach, N.S. and M.E. Taylor, Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cells. Glycobiology, 2003. 13(5): p. 401-10. 21.Bergman, M.P., et al., Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN. Journal of Experimental Medicine, 2004. 200(8): p. 979-990. 22.Grutz, G., New insights into the molecular mechanism of interieukin-10-mediated immunosuppression. Journal of Leukocyte Biology, 2005. 77(1): p. 3-15. 23.Waisman, D.M., Annexin II tetramer: structure and function. Mol Cell Biochem, 1995. 149-150: p. 301-22. 24.Menell, J.S., et al., Annexin II and bleeding in acute promyelocytic leukemia. N Engl J Med, 1999. 340(13): p. 994-1004. 25.Bharadwaj, A., et al., Annexin A2 heterotetramer: structure and function. Int J Mol Sci, 2013. 14(3): p. 6259-305. 26.Burger, A., et al., The crystal structure and ion channel activity of human annexin II, a peripheral membrane protein. J Mol Biol, 1996. 257(4): p. 839-47. 27.Chiang, Y., et al., Specific down-regulation of annexin II expression in human cells interferes with cell proliferation. Mol Cell Biochem, 1999. 199(1-2): p. 139-47. 28.Ling, Q. and K.A. Hajjar, Inhibition of endothelial cell thromboresistance by homocysteine. J Nutr, 2000. 130(2S Suppl): p. 373S-376S. 29.Liu, L., J.Q. Tao, and U.J. Zimmerman, Annexin II binds to the membrane of A549 cells in a calcium-dependent and calcium-independent manner. Cell Signal, 1997. 9(3-4): p. 299-304. 30.Protzel, C., et al., The role of annexins I, II and IV in tumor development, progression and metastasis of human penile squamous cell carcinomas. World J Urol, 2011. 29(3): p. 393-8. 31.Lokman, N.A., et al., Annexin A2 is regulated by ovarian cancer-peritoneal cell interactions and promotes metastasis. Oncotarget, 2013. 4(8): p. 1199-1211. 32.Zhang, H.J., et al., Annexin A2 silencing inhibits invasion, migration, and tumorigenic potential of hepatoma cells. World J Gastroenterol, 2013. 19(24): p. 3792-801. 33.Chan, C.M., et al., Proteomic comparison of nasopharyngeal cancer cell lines C666-1 and NP69 identifies down-regulation of annexin II and beta2-tubulin for nasopharyngeal carcinoma. Arch Pathol Lab Med, 2008. 132(4): p. 675-83. 34.Luo, W., et al., Epstein-Barr virus latent membrane protein 1 mediates serine 25 phosphorylation and nuclear entry of annexin A2 via PI-PLC-PKCalpha/PKCbeta pathway. Mol Carcinog, 2008. 47(12): p. 934-46. 35.Savagner, P., et al., Modulations of the epithelial phenotype during embryogenesis and cancer progression. Cancer Treat Res, 1994. 71: p. 229-49. 36.Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002. 2(6): p. 442-54. 37.Thompson, E.W., D.F. Newgreen, and D. Tarin, Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res, 2005. 65(14): p. 5991-5; discussion 5995. 38.Folkman, J., Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971. 285(21): p. 1182-6. 39.Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90. 40.Holian, J., et al., Role of Kruppel-like factor 6 in transforming growth factor-beta1-induced epithelial-mesenchymal transition of proximal tubule cells. Am J Physiol Renal Physiol, 2008. 295(5): p. F1388-96. 41.Lv, Z.D., et al., Induction of gastric cancer cell adhesion through transforming growth factor-beta1-mediated peritoneal fibrosis. Journal of Experimental & Clinical Cancer Research, 2010. 29. 42.Miyazono, K., Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci, 2009. 85(8): p. 314-23. 43.Peinado, H., D. Olmeda, and A. Cano, Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer, 2007. 7(6): p. 415-28. 44.Massague, J. and D. Wotton, Transcriptional control by the TGF-beta/Smad signaling system. Embo Journal, 2000. 19(8): p. 1745-1754. 45.Oft, M., K.H. Heider, and H. Beug, TGF beta signaling is necessary for carcinoma cell invasiveness and metastasis. Current Biology, 1998. 8(23): p. 1243-1252. 46.Roberts, A.B. and L.M. Wakefield, The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A, 2003. 100(15): p. 8621-3. 47.Oft, M., et al., TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev, 1996. 10(19): p. 2462-77. 48.Xu, J., S. Lamouille, and R. Derynck, TGF-beta-induced epithelial to mesenchymal transition. Cell Res, 2009. 19(2): p. 156-72. 49.Locksley, R.M., N. Killeen, and M.J. Lenardo, The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 2001. 104(4): p. 487-501. 50.Rhyu, D.Y., et al., Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol, 2005. 16(3): p. 667-75. 51.Liu, X.X., et al., NADPH oxidase-dependent formation of reactive oxygen species contributes to transforming growth factor beta1-induced epithelial-mesenchymal transition in rat peritoneal mesothelial cells, and the role of astragalus intervention. Chin J Integr Med, 2012. 52.Wang, H., et al., Epithelial-mesenchymal transition (EMT) induced by TNF-alpha requires AKT/GSK-3beta-mediated stabilization of snail in colorectal cancer. PLoS One, 2013. 8(2): p. e56664. 53.Li, C.W., et al., Epithelial-mesenchymal transition induced by TNF-alpha requires NF-kappaB-mediated transcriptional upregulation of Twist1. Cancer Res, 2012. 72(5): p. 1290-300. 54.Castellino, R.C. and D.L. Durden, Mechanisms of disease: the PI3K-Akt-PTEN signaling node--an intercept point for the control of angiogenesis in brain tumors. Nat Clin Pract Neurol, 2007. 3(12): p. 682-93. 55.Theys, J., et al., E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radiother Oncol, 2011. 99(3): p. 392-7. 56.Liu, Y., et al., Activation of AKT is associated with metastasis of nasopharyngeal carcinoma. Tumour Biol, 2012. 33(1): p. 241-5. 57.Chen, W., et al., Effect of AKT inhibition on epithelial-mesenchymal transition and ZEB1-potentiated radiotherapy in nasopharyngeal carcinoma. Oncol Lett, 2013. 6(5): p. 1234-1240. 58.Larue, L. and A. Bellacosa, Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3'' kinase/AKT pathways. Oncogene, 2005. 24(50): p. 7443-54. 59.Rodrigo, J.P., et al., Clinical significance of annexin A2 downregulation in oral squamous cell carcinoma. Head Neck, 2011. 33(12): p. 1708-14. 60.Zhong, L.P., et al., Increased expression of Annexin A2 in oral squamous cell carcinoma. Arch Oral Biol, 2009. 54(1): p. 17-25. 61.Liao, S.K., et al., Chromosomal abnormalities of a new nasopharyngeal carcinoma cell line (NPC-BM1) derived from a bone marrow metastatic lesion. Cancer Genet Cytogenet, 1998. 103(1): p. 52-8. 62.Folberg, R., M.J. Hendrix, and A.J. Maniotis, Vasculogenic mimicry and tumor angiogenesis. Am J Pathol, 2000. 156(2): p. 361-81. 63.Lorusso, A., et al., Annexin2 coating the surface of enlargeosomes is needed for their regulated exocytosis. EMBO J, 2006. 25(23): p. 5443-56. 64.Cocucci, E., et al., Enlargeosome traffic: exocytosis triggered by various signals is followed by endocytosis, membrane shedding or both. Traffic, 2007. 8(6): p. 742-57. 65.Prada, I., et al., The Ca2+-dependent exocytosis of enlargeosomes is greatly reinforced by genistein via a non-tyrosine kinase-dependent mechanism. FEBS Lett, 2007. 581(25): p. 4932-6. 66.Madureira, P.A., et al., Genotoxic agents promote the nuclear accumulation of annexin A2: role of annexin A2 in mitigating DNA damage. PLoS One, 2012. 7(11): p. e50591. 67.Chow, B.H., et al., Increased expression of annexin I is associated with drug-resistance in nasopharyngeal carcinoma and other solid tumors. Proteomics Clin Appl, 2009. 3(6): p. 654-62. 68.Zeng, G.Q., et al., Annexin A1: a new biomarker for predicting nasopharyngeal carcinoma response to radiotherapy. Med Hypotheses, 2013. 81(1): p. 68-70. 69.Hucumenoglu, S., et al., Annexin A2, A7, and A11 expression in head and neck squamous cell carcinomas. Turkish Journal of Medical Sciences, 2009. 39(4): p. 547-555. 70.Cheng, J.C., et al., Radiation-enhanced hepatocellular carcinoma cell invasion with MMP-9 expression through PI3K/Akt/NF-kappaB signal transduction pathway. Oncogene, 2006. 25(53): p. 7009-18. 71.Sakamoto, K. and G.D. Holman, Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab, 2008. 295(1): p. E29-37. 72.Rajendran, L., H.J. Knolker, and K. Simons, Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov, 2010. 9(1): p. 29-42.
|