(3.239.192.241) 您好!臺灣時間:2021/03/02 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:袁莉屏
研究生(外文):Li-Ping YUAN
論文名稱:組蛋白去乙醯酶抑制劑用以抑制抗藥性慢性血癌幹細胞生長之研究
論文名稱(外文):Investigation and utilization of Histone Deacetylase Inhibitors to suppress the growth of drug-resistant chronic myeloid leukemia stem/initiating cells
指導教授:何元順
口試委員:潘敏雄楊沂淵
口試日期:2014-01-10
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學檢驗暨生物技術學系所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:68
中文關鍵詞:慢性骨髓性白血病抗藥性血癌幹細胞組蛋白去乙醯酶抑制劑
外文關鍵詞:chronic myeloid leukemiadrug-resistant chronic myeloid leukemia stem cellHistone Deacetylase Inhibitors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:8
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Imatinib (Gleevec)是治療慢性骨髓性白血病臨床的第一線標靶藥物,但疾病復發頻繁且容易伴隨著抗藥性的發生。癌症幹細胞學說是近年癌症生物學非常重要之進展,此理論不但提供慢性骨髓性白血病生成之可能原因,更解釋慢性血癌產生抗藥性導致難以治癒之可能機轉。因此,在慢性骨髓性白血病的治療上如何標靶及清除癌症幹細胞是一項很重要之研究議題。我們利用GEO資料庫系統分析發現組蛋白去乙醯?&a族(HDAC)在CML患者之高度表現與Imatinib抗藥性具有相關性。因此本研究之目的主要探討Imatinib抗藥性與慢性血癌幹細胞生成之關聯及合併HDAC抑製劑來治療Imatinib抗藥性之可能性。首先,我們以K562慢性血癌細胞為模式,利用FACSaria分選並鑑定CD34(+) / CD38(-)細胞具有高度Oct4 ,CD133, β-catenin和Sox2等癌幹細胞基因表現。此外,我們還證實CD34(+) / CD38(-)細胞亦有高度表現HDAC家族和抗藥性基因,推測與Imatinib抗藥性有相關。有趣的是,我們也發現HDAC抑製劑:SAHA可增強Imatinib抑制CD34(+) / CD38(-)細胞生長之能力並且可以藉由調控細胞週期的蛋白(CDK , P18 , P21和P27)和細胞凋亡蛋白(BCL - 2和BAX)的表現增加來誘導CD34(+) / CD38(-)細胞進行凋亡。從機制分析,我們認為合併SAHA及Imatinib治療可以降低細胞內HDAC 4 , 5和cyclin D3的表現,進而提升細胞對Imatinib敏感性增加。藉此研究,我們證實了CD34(+) / CD38(-)細胞具高度表現HDAC基因能力,這種高表達與Imatinib抗藥性有關。加入HDAC抑製劑:SAHA 使得對Imatinib抗藥性的癌症幹細胞對淤Imatinib再度敏感化。這種藥物之組合有可能被用於未來臨床的使用,以減少對Imatinib的抗藥性和CML復發。
Imatinib (Gleevec) is the clinical first line agent for treating chronic myeloid leukemia (CML), but disease recurrence are frequent and accompanied with resistance. One of the major contributors for imatinib-resistance is leukemia-initiating cells (LICs). Thus, targeting and eliminating LICs represents an important task for treating CML. Through public GEO database analysis, we have identified that a high expression level of histone deacetylases (HDAC) is associated with imatinib resistance in CML patients. In this study, we aimed to investigate the relevance of Imatinib -resistant cells and CD34 + cells in the generation of CML stem cells and the usage of HDAC inhibitor for possible combination therapy. First, we isolated and identified CD34(+)/CD38(-) cells with high expression of Oct4, CD133, β-catenin, and Sox2. Furthermore, we also demonstrated that high expression of HDAC and drug resistant gene were found in CD34(+)/CD38(-) LICs and associated with their resistance to imatinib. Importantly, the usage of HDAC inhibitor, SAHA, in combination with Imatinib sensitized CD34(+)/CD38(-) LICs and induced apoptosis, shown by increased expression of cell cycle (CDK2, P18, P21, and P27) and apoptotic proteins (BCL-2 and BAX). Mechanistically, the combined treatment reduced HDAC 4, 5 and cyclin D3 protein expression, which led to increased sensitivity toward SAHA and Imatinib. In conclusion, we demonstrated that LICs (CD34+/CD38-) express a high level of HDAC and this high expression was associated with imatinib resistance. Adding HDAC inhibitor, SAHA, re-sensitized imatinib-resistant LICs to imatinib. This combination could potentially be employed for future clinical settings to reduce imatinib resistance and CML recurrence.
目錄
致謝 - 1 -
目錄 - 3 -
摘要 - 6 -
Abstract - 7 -
第一章 緒論(Introduction) - 8 -
(一)前言 - 9 -
(二) 白血病(Leukemia)的介紹 - 9 -
(三) 慢性骨髓性白血病(chronic myeloid leukemia;CML)的介紹 - 11 -
(四) BCR-ABL致癌蛋白質 - 14 -
(五) 白血病幹細胞的特性 - 14 -
(六) Imatinib: indication of CML - 15 -
(七) CML復發的原因 - 16 -
(八) Histone deacetylases, HDACs - 17 -
(九) Histone deacetylases, HDACs的分類 - 18 -
(十) HDAC inhibitors, HDACi的功能 - 19 -
(十一) HDAC inhibitor(Histone deacetylase inhibitor)--- Vorinostat(SAHA) - 19 -
第二章 實驗動機目的與設計 - 21 -
第三章 實驗材料與方法(Materials and Methods) - 23 -
(一) 選用細胞 - 24 -
(二) 藥品試劑與常用溶液 - 25 -
(三) 常用儀器 - 29 -
(四) 實驗方法 - 30 -
(1) 細胞解凍、繼代、冷凍保存 - 30 -
(2) 細胞存活率測定(trypan blue exclusion) - 31 -
(3) RNA extraction & RNA濃度測定 - 31 -
(4) 反轉錄—聚合酶連鎖反應 (RT-PCR) - 32 -
(5)即時定量聚合酶連鎖反應(Real-time PCR) - 33 -
(6) 蛋白質萃取 - 33 -
(7) 蛋白質測定 - 33 -
(8) 西方墨點法(Western Blotting Assay) - 34 -
(9) Cell cycle analysis - 35 -
第四章 實驗結果(Results) - 36 -
(一) 分離與觀察白血病幹細胞的幹性基因表現 - 37 -
(二)白血病幹細胞相關蛋白質的幹性基因表現 - 37 -
(三) 白血病幹細胞在HDAC上的蛋白表現 - 38 -
(四) Imatinib對白血病幹細胞的影響 - 39 -
(五) 使用HDAC inhibitor-SAHA與IM分別治療對CD34+/CD38-白血病細胞的影響 - 39 -
(六) 使用HDAC inhibitor-SAHA與IM合併治療對CD34+CD38-白血病幹細胞的影響 - 40 -
(七) HDAC inhibitor-SAHA與IM合併治療後對白血病幹細胞的蛋白表現 - 40 -
(八) 白血病幹細胞經HDAC inhibitor-SAHA與IM合併治療後其細胞生長週期的表現 - 41 -
第五章 實驗討論 - 43 -
第六章 結論 - 49 -
第七章 圖表 - 51 -
圖 1(A). 實驗模型與假說。 - 52 -
圖 1(B).實驗設計。 - 53 -
圖2. K562細胞的白血病幹細胞亞群的特徵表現。 - 54 -
圖 3. K562母細胞、CD34+/CD34+與CD34+/CD38-兩個白血病幹細胞亞群的訊號表現。 - 55 -
圖 4. K562母細胞、CD34+/CD34+與CD34+/CD38-兩個LSCs亞群在Histone Deacetylases的訊號表現。 - 56 -
圖 5 比較CD34+/CD38− and CD34+/CD38+ LSCs對Iimatinib抗藥性的表現。 - 57 -
圖 6. CD34+38-白血病幹細胞經HDACi治療後訊號表現。 - 58 -
圖 7. CD34+38-經IM與SAHA治療後細胞存活率表現。 - 59 -
圖 8. CD34+38-經IM與SAHA合併治療後訊號表現。 - 60 -
圖 9. 使用FACS方法觀察CD34+38-經IM與SAHA單獨或合併治療後的細胞凋亡情況。 - 61 -
第八章 附圖 - 62 -
附圖1.CML抗藥性基因表現 - 63 -
附圖2.CML抗藥性基因表現的Reference Marker - 63 -
第九章 參考文獻 - 64 -
(1)Radivoyevitch T, Jankovic GM, Tiu RV, Saunthararajah Y, Jackson RC, Hlatky LR, Gale RP, Sachs RK.Sex differences in the incidence of chronic myeloid leukemia. Radiat Environ Biophys. 2013 Dec 13.
(2)Mandal R, Bolt DM, Shah BK. Disparities in chronic myeloid leukemia survival by age, gender, and ethnicity in pre- and post-imatinib eras in the US. Acta Oncol. 2013 May;52(4):837-41. doi: 10.3109/0284186X.2012.707784. Epub 2012 Nov 26.
(3)Sessions J. Chronic myeloid leukemia in 2007. J Manag Care Pharm. 2007 Oct;13(8 Suppl A):4-7
(4)Aliano S, Cirmena G, Fugazza G, Bruzzone R, Palermo C, Sessarego M. Standard and variant Philadelphia translocation in a CML patient with different sensitivity to imatinib therapy. Leuk Res Rep. 2013 Aug 31;2(2):75-8.
(5)Scott A. Stuart1,2,3, Yosuke Minami4, and Jean Y.J. Wang1,2,3,* The CML stem cell: Evolution of the progenitor. Published in final edited form as:Cell Cycle. 2009 May 1; 8(9): 1338–1343.
(6)Gorre, M.E., Mohammed, M., Ellwood, K., Hsu, N., Paquette, R.,
Rao, N. and Sayers, C.L. (2001) “Clinical resistance to STI571
cancer therapy caused by BCR-ABL gene mutation or amplification”,Science 293, 876–880.
(7)le Coutre, P., Tassi, E., Varella-Garcia, M., Barni, R., Mologni, L.,Cabrita, G., Marchesi, E., Supino, R. and Gambacorti-Passerini, C.(2000) “Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification”, Blood 95,
1758–1766.
(8)Mahon, F.X., Deininger, M.W., Schultheis, B., Chabrol, J., Reiffers,J., Goldman, J.M. and Melo, J.V. (2000) “Selection and
characterization of BCR-ABL positive cell lines with differential
sensitivity to the tyrosine kinase inhibitor STI571: diverse
mechanisms of resistance”, Blood 96, 1070–1079.
(9)Weisberg, E. and Griffin, J.D. (2000) “Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL transformed hematopoietic cell lines”, Blood 95, 3498–3505.
(10)Bin Zhang,1 Adam C. Strauss,1 Su Chu,1 Min Li,2 Yinwei Ho,1 Keh-Dong Shiang,1,2 David S. Snyder,3 Claudia S. Huettner,4
Leonard Shultz,5 Tessa Holyoake,6 and Ravi Bhatia1,* Effective Targeting of Quiescent Chronic Myelogenous Leukemia Stem Cells by Histone Deacetylase Inhibitors in Combination with Imatinib Mesylate. Cancer Cell 17, 427–442, May 18, 2010.
(11)Jiang, X.; Forrest, D.; Nicolini, F.; Turhan, A.; Guilhot, J.; Yip, C.; Holyoake, T.; Jorgensen, H.; Lambie, K.; Saw, K. M.; Pang, E.; Vukovic, R.; Lehn, P.; Ringrose, A.; Yu, M.; Brinkman, R. R.; Smith, C.; Eaves, A.; Eaves, C. Properties of CD34+ CML stem/progenitor cells that correlate with different clinical responses to imatinib mesylate. Blood 2010, 116, 2112−2121.
(12)Wong, S. & Witte, O. N. The BCR-ABL story: bench to bedside and back. Annu Rev Immunol 22, 247-306, doi:10.1146 /annurev .immunol.22.012703.104753 (2004).
(13)Avil?臃-V?嚎quez S, Ch?償ez-Gonz?鴣ez A, Mayani H. [Tyrosine kinase inhibitors (TKI): a new revolution in the treatment of chronic myeloid leukemia (CML)]. Gac Med Mex. 2013 Nov-Dec;149(6):646-54.
(14)Jiang, X.; Saw, K. M.; Eaves, A.; Eaves, C. Instability of BCR-ABL gene in primary and cultured chronic myeloid leukemia stem cells. J. Natl. Cancer Inst. 2007, 99, 680−693.
(15)J?廨gensen HG, Holyoake TL. Characterization of cancer stem cells in chronic myeloid leukaemia. Biochem Soc Trans. 2007 Nov;35(Pt 5):1347-51.
(16)Corbin, A. S.; Agarwal, A.; Loriaux, M.; Cortes, J.; Deininger, M. W.; Druker, B. J. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J. Clin. Invest. 2011, 121, 396−409.
(17)Chen, Y.; Peng, C.; Li, D.; Li, S. Molecular and cellular bases of chronic myeloid leukemia. Protein Cell 2010, 1, 124−132.
(18)Hu, Y.; Swerdlow, S.; Duffy, T. M.; Weinmann, R.; Lee, F. Y.; Li, S. Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16870−16875.
(19)Nerlov C. Targeting a chronic problem: elimination of cancer stem cells in CML. EMBO J. 2009 Feb 4;28(3):167-8. doi: 10.1038/emboj.2008.292.
(20)Testa U. Leukemia stem cells. Ann Hematol. 2011 Mar;90 (3) :245-71. doi: 10.1007/s00277-010-1118-7. Epub 2010 Nov 25.
(21)Nicholson E, Holyoake T. The chronic myeloid leukemia stem cell.Clin Lymphoma Myeloma. 2009;9 Suppl 4:S376-81. doi: 10.3816/CLM.2009.s.037.
(22)Gambacorti-Passerini, C. B.; Gunby, R. H.; Piazza, R.; Galietta,A.; Rostagno, R.; Scapozza, L. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol. 2003, 4, 75−85.
(23)Paul MK, Mukhopadhyay AK. Tyrosine kinase - Role and significance in Cancer. Int J Med Sci. 2004;1(2):101-115. Epub 2004 Jun 1.
(24)Mariani S1, Basciani S1, Giona F2, Lubrano C1, Ulisse S1, Gnessi L1. Leptin modification in chronic myeloid leukemia patients treated with imatinib: An emerging effect of targeted therapy. Leuk Res Rep. 2013 Aug 8;2(2):58-60. doi: 10.1016/j.lrr.2013.07.001.
(25)Lestienne C, Cornu V, Duflos N, Lai J. L,Philippe N, Facon T, Fenaux P, Preudhomme C. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 2002, 100, 1014−1018.
(26)Shah, N. P.; Sawyers, C. L. Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene 2003, 22, 7389−7395.
(27)Bedel A, Pasquet JM, Lippert E, Taillepierre M, Lagarde V, Dabernat S, Dubus P, Charaf L, Beliveau F, de Verneuil H, Richard E, Mahon FX, Moreau-Gaudry F. Variable behavior of iPSCs derived from CML patients for response to TKI and hematopoietic differentiation.PLoS One. 2013 Aug 23 ; 8 (8) : e71596. doi: 10.1371/journal.pone.0071596.
(28)Robert L. Redner. Why Doesn’t Imatinib Cure Chronic Myeloid Leukemia? The Oncologist 2010;15:182–186
(29)West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014 Jan 2;124(1):30-9. doi: 10.1172/JCI69738. Epub 2014 Jan 2.
(30)Newbold A, Salmon JM, Martin BP, Stanley K, Johnstone RW. The role of p21waf1/cip1 and p27Kip1 in HDACi-mediated tumor cell death and cell cycle arrest in the Eμ-myc model of B-cell lymphoma. Oncogene. 2013 Dec 2. doi: 10.1038/onc.2013.482. [Epub ahead of print]
(31)Kagawa S, Fujiwara T, Hizuta A, Yasuda T, Zhang WW, Roth JA, Tanaka N. p53 expression overcomes p21WAF1/CIP1-mediated G1 arrest and induces apoptosis in human cancer cells. Oncogene. 1997 Oct 16;15(16):1903-9.
(32)Frew AJ, Johnstone RW, Bolden JE. Enhancing the apoptotic and therapeutic effects of HDAC inhibitors. Cancer Lett. 2009 Aug 8;280(2):125-33. doi: 10.1016/j.canlet.2009.02.042. Epub 2009 Apr 8.
(33)Papavassiliou KA, Papavassiliou AG. Histone deacetylases inhibitors: conjugation to other anti-tumour pharmacophores provides novel tools for cancer treatment. Expert Opin Investig Drugs. 2013 Nov 11. [Epub ahead of print]
(34)Cao B, Li J, Zhu J, Shen M, Han K, Zhang Z, Yu Y, Wang Y, Wu D, Chen S, Sun A, Tang X, Zhao Y, Qiao C, Hou T, Mao X. The antiparasitic clioquinol induces apoptosis in leukemia and myeloma cells by inhibiting histone deacetylase activity. J Biol Chem. 2013 Nov 22;288(47):34181-9. doi: 10.1074 /jbc. M113. 472563. Epub 2013 Oct 10.
(35)Gammoh N, Marks PA, Jiang X. Curbing autophagy and histone deacetylases to kill cancer cells. Autophagy. 2012 Oct;8(10): 1521-2. doi: 10.4161/auto.21151. Epub 2012 Aug 16.
(36)Pal D, Saha S. Hydroxamic acid - A novel molecule for anticancer therapy. J Adv Pharm Technol Res. 2012 Apr;3(2):92-9. doi: 10.4103/2231-4040.97281.
(37)Gryder BE, Sodji QH, Oyelere AK. Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med Chem. 2012 Mar;4(4):505-24. doi: 10.4155/fmc.12.3.
(38)Koeffler, H. P. & Golde, D. W. Human myeloid leukemia cell lines: a review. Blood 56, 344-350 (1980).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔