|
1.F. Ritossa. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia. 18:571-573 (1962). 2.M.P. Goetz, D.O. Toft, M.M. Ames, and C. Erlichman. The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol. 14:1169-1176 (2003). 3.M. Akerfelt, R.I. Morimoto, and L. Sistonen. Heat shock factors: integrators of cell stress, development and lifespan. Nature reviews Molecular cell biology. 11:545-555 (2010). 4.K. Bedardand K.H. Krause. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 87:245-313 (2007). 5.M. Taipale, D.F. Jarosz, and S. Lindquist. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nature reviews Molecular cell biology. 11:515-528 (2010). 6.L. Whiteselland S.L. Lindquist. HSP90 and the chaperoning of cancer. Nature reviews Cancer. 5:761-772 (2005). 7.A. Zuehlkeand J.L. Johnson. Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers. 93:211-217 (2010). 8.D.S. Hong, U. Banerji, B. Tavana, G.C. George, J. Aaron, and R. Kurzrock. Targeting the molecular chaperone heat shock protein 90 (HSP90): lessons learned and future directions. Cancer treatment reviews. 39:375-387 (2013). 9.S. Khalidand S. Paul. Identifying a C-terminal ATP binding sites-based novel Hsp90-Inhibitor in silico: A plausible therapeutic approach in Alzheimer’s disease. Medical Hypotheses. 83:39-46 (2014). 10.A. Donnellyand B.S. Blagg. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Current medicinal chemistry. 15:2702-2717 (2008). 11.C. Soti, A. Racz, and P. Csermely. A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket. The Journal of biological chemistry. 277:7066-7075 (2002). 12.H. Zhangand F. Burrows. Targeting multiple signal transduction pathways through inhibition of Hsp90. Journal of molecular medicine. 82:488-499 (2004). 13.J.M. Eckland K. Richter. Functions of the Hsp90 chaperone system: lifting client proteins to new heights. International journal of biochemistry and molecular biology. 4:157-165 (2013). 14.Y. Yufu, J. Nishimura, and H. Nawata. High constitutive expression of heat shock protein 90 alpha in human acute leukemia cells. Leukemia research. 16:597-605 (1992). 15.J.M. Peyrat, S; Brion, JD; Alami, M. inhibitors of the heat shock protein 90 from cancer clinical trials to neurodegenerative diseases. Atlas Genet Cytogenet Oncol Haematol. 15:89-105 (2011). 16.L. Neckers. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends in Molecular Medicine. 8:S55-S61 (2002). 17.L. Whitesell, E.G. Mimnaugh, B. De Costa, C.E. Myers, and L.M. Neckers. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proceedings of the National Academy of Sciences. 91:8324-8328 (1994). 18.P.A. Brough, W. Aherne, X. Barril, J. Borgognoni, K. Boxall, J.E. Cansfield, K.M. Cheung, I. Collins, N.G. Davies, M.J. Drysdale, B. Dymock, S.A. Eccles, H. Finch, A. Fink, A. Hayes, R. Howes, R.E. Hubbard, K. James, A.M. Jordan, A. Lockie, V. Martins, A. Massey, T.P. Matthews, E. McDonald, C.J. Northfield, L.H. Pearl, C. Prodromou, S. Ray, F.I. Raynaud, S.D. Roughley, S.Y. Sharp, A. Surgenor, D.L. Walmsley, P. Webb, M. Wood, P. Workman, and L. Wright. 4,5-diarylisoxazole Hsp90 chaperone inhibitors: potential therapeutic agents for the treatment of cancer. J Med Chem. 51:196-218 (2008). 19.A. Ambade, D. Catalano, A. Lim, and P. Mandrekar. Inhibition of heat shock protein (molecular weight 90 kDa) attenuates proinflammatory cytokines and prevents lipopolysaccharide-induced liver injury in mice. Hepatology. 55:1585-1595 (2012). 20.K.H. Lee, J.H. Lee, S.W. Han, S.A. Im, T.Y. Kim, D.Y. Oh, and Y.J. Bang. Antitumor activity of NVP-AUY922, a novel heat shock protein 90 inhibitor, in human gastric cancer cells is mediated through proteasomal degradation of client proteins. Cancer science. 102:1388-1395 (2011). 21.F. Zagouri, T.N. Sergentanis, D. Chrysikos, C.A. Papadimitriou, M.-A. Dimopoulos, and T. Psaltopoulou. Hsp90 inhibitors in breast cancer: A systematic review. Breast. 22:569-578 (2013). 22.L. Neckersand P. Workman. Hsp90 Molecular Chaperone Inhibitors: Are We There Yet? Clinical Cancer Research. 18:64-76 (2012). 23.S.A. Eccles, A. Massey, F.I. Raynaud, S.Y. Sharp, G. Box, M. Valenti, L. Patterson, A. de Haven Brandon, S. Gowan, F. Boxall, W. Aherne, M. Rowlands, A. Hayes, V. Martins, F. Urban, K. Boxall, C. Prodromou, L. Pearl, K. James, T.P. Matthews, K.M. Cheung, A. Kalusa, K. Jones, E. McDonald, X. Barril, P.A. Brough, J.E. Cansfield, B. Dymock, M.J. Drysdale, H. Finch, R. Howes, R.E. Hubbard, A. Surgenor, P. Webb, M. Wood, L. Wright, and P. Workman. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer research. 68:2850-2860 (2008). 24.E.B. Garon, R.S. Finn, H. Hamidi, J. Dering, S. Pitts, N. Kamranpour, A.J. Desai, W. Hosmer, S. Ide, E. Avsar, M.R. Jensen, C. Quadt, M. Liu, S.M. Dubinett, and D.J. Slamon. The HSP90 inhibitor NVP-AUY922 potently inhibits non-small cell lung cancer growth. Molecular cancer therapeutics. 12:890-900 (2013). 25.T. Okui, T. Shimo, N.M. Hassan, T. Fukazawa, N. Kurio, M. Takaoka, Y. Naomoto, and A. Sasaki. Antitumor effect of novel HSP90 inhibitor NVP-AUY922 against oral squamous cell carcinoma. Anticancer research. 31:1197-1204 (2011). 26.J. Huang, C. Sun, T. Zhang, L. Pan, S. Wang, Q. He, and D. Li. Potent antitumor activity of HSP90 inhibitor AUY922 in adrenocortical carcinoma. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine(2014). 27.K. Zitzmann, G. Ailer, G. Vlotides, G. Spoettl, J. Maurer, B. Goke, F. Beuschlein, and C.J. Auernhammer. Potent antitumor activity of the novel HSP90 inhibitors AUY922 and HSP990 in neuroendocrine carcinoid cells. International journal of oncology. 43:1824-1832 (2013). 28.J. Madrigal-Matute, O. Lopez-Franco, L.M. Blanco-Colio, B. Munoz-Garcia, P. Ramos-Mozo, L. Ortega, J. Egido, and J.L. Martin-Ventura. Heat shock protein 90 inhibitors attenuate inflammatory responses in atherosclerosis. Cardiovascular research. 86:330-337 (2010). 29.E. Hertlein, A.J. Wagner, J. Jones, T.S. Lin, K.J. Maddocks, W.H. Towns, 3rd, V.M. Goettl, X. Zhang, D. Jarjoura, C.A. Raymond, D.A. West, C.M. Croce, J.C. Byrd, and A.J. Johnson. 17-DMAG targets the nuclear factor-kappaB family of proteins to induce apoptosis in chronic lymphocytic leukemia: clinical implications of HSP90 inhibition. Blood. 116:45-53 (2010). 30.S.K. Shimp, 3rd, C.D. Parson, N.L. Regna, A.N. Thomas, C.B. Chafin, C.M. Reilly, and M. Nichole Rylander. HSP90 inhibition by 17-DMAG reduces inflammation in J774 macrophages through suppression of Akt and nuclear factor-kappaB pathways. Inflammation research : official journal of the European Histamine Research Society [et al]. 61:521-533 (2012). 31.D.M. Mosserand J.P. Edwards. Exploring the full spectrum of macrophage activation. Nature reviews Immunology. 8:958-969 (2008). 32.Y.C. Liu, X.B. Zou, Y.F. Chai, and Y.M. Yao. Macrophage Polarization in Inflammatory Diseases. International journal of biological sciences. 10:520-529 (2014). 33.D.B. Rylatt, A. Aitken, T. Bilham, G.D. Condon, N. Embi, and P. Cohen. Glycogen synthase from rabbit skeletal muscle. Amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3, and extension of the N-terminal sequence containing the site phosphorylated by phosphorylase kinase. European journal of biochemistry / FEBS. 107:529-537 (1980). 34.M. Medinaand F. Wandosell. Deconstructing GSK-3: The Fine Regulation of Its Activity. International journal of Alzheimer''s disease. 2011:479249 (2011). 35.R.S. Jope, C.J. Yuskaitis, and E. Beurel. Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochemical research. 32:577-595 (2007). 36.M. Martin, K. Rehani, R.S. Jope, and S.M. Michalek. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nature immunology. 6:777-784 (2005). 37.K.A. Steinbrecher, W. Wilson, 3rd, P.C. Cogswell, and A.S. Baldwin. Glycogen synthase kinase 3beta functions to specify gene-specific, NF-kappaB-dependent transcription. Molecular and cellular biology. 25:8444-8455 (2005). 38.J.A. Buras, B. Holzmann, and M. Sitkovsky. Animal models of sepsis: setting the stage. Nature reviews Drug discovery. 4:854-865 (2005). 39.J.W. Tjiu, J.S. Chen, C.T. Shun, S.J. Lin, Y.H. Liao, C.Y. Chu, T.F. Tsai, H.C. Chiu, Y.S. Dai, H. Inoue, P.C. Yang, M.L. Kuo, and S.H. Jee. Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. The Journal of investigative dermatology. 129:1016-1025 (2009). 40.W. Chanput, J. Mes, R.A. Vreeburg, H.F. Savelkoul, and H.J. Wichers. Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: a tool to study inflammation modulating effects of food-derived compounds. Food & function. 1:254-261 (2010). 41.K.A. Ryan, M.F. Smith, Jr., M.K. Sanders, and P.B. Ernst. Reactive oxygen and nitrogen species differentially regulate Toll-like receptor 4-mediated activation of NF-kappa B and interleukin-8 expression. Infection and immunity. 72:2123-2130 (2004). 42.H. Ando, T. Takamura, T. Ota, Y. Nagai, and K. Kobayashi. Cerivastatin improves survival of mice with lipopolysaccharide-induced sepsis. The Journal of pharmacology and experimental therapeutics. 294:1043-1046 (2000). 43.J.A. Nemzek, K.M. Hugunin, and M.R. Opp. Modeling sepsis in the laboratory: merging sound science with animal well-being. Comparative medicine. 58:120-128 (2008). 44.J. Yang, J. Xu, X. Chen, Y. Zhang, X. Jiang, X. Guo, and G. Zhao. Decrease of plasma platelet-activating factor acetylhydrolase activity in lipopolysaccharide induced mongolian gerbil sepsis model. PLoS One. 5:e9190 (2010). 45.H.R. Kim, H.S. Kang, and H.D. Kim. Geldanamycin induces heat shock protein expression through activation of HSF1 in K562 erythroleukemic cells. IUBMB life. 48:429-433 (1999). 46.M.A. Elo, K. Kaarniranta, H.J. Helminen, and M.J. Lammi. Hsp90 inhibitor geldanamycin increases hsp70 mRNA stabilisation but fails to activate HSF1 in cells exposed to hydrostatic pressure. Biochimica et biophysica acta. 1743:115-119 (2005). 47.H. Zhang, D. Chung, Y.C. Yang, L. Neely, S. Tsurumoto, J. Fan, L. Zhang, M. Biamonte, J. Brekken, K. Lundgren, and F. Burrows. Identification of new biomarkers for clinical trials of Hsp90 inhibitors. Molecular cancer therapeutics. 5:1256-1264 (2006). 48.H. Schwende, E. Fitzke, P. Ambs, and P. Dieter. Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. Journal of Leukocyte Biology. 59:555-561 (1996). 49.R. Landmann, H.P. Knopf, S. Link, S. Sansano, R. Schumann, and W. Zimmerli. Human monocyte CD14 is upregulated by lipopolysaccharide. Infection and immunity. 64:1762-1769 (1996). 50.K. Gee, W. Lim, W. Ma, D. Nandan, F. Diaz-Mitoma, M. Kozlowski, and A. Kumar. Differential regulation of CD44 expression by lipopolysaccharide (LPS) and TNF-alpha in human monocytic cells: distinct involvement of c-Jun N-terminal kinase in LPS-induced CD44 expression. Journal of immunology. 169:5660-5672 (2002). 51.F. Rey-Giraud, M. Hafner, and C.H. Ries. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions. PLoS One. 7:e42656 (2012). 52.M. Miravete, R. Dissard, J. Klein, J. Gonzalez, C. Caubet, C. Pecher, B. Pipy, J.L. Bascands, M. Mercier-Bonin, J.P. Schanstra, and B. Buffin-Meyer. Renal tubular fluid shear stress facilitates monocyte activation toward inflammatory macrophages. American journal of physiology Renal physiology. 302:F1409-1417 (2012). 53.M. Shigeoka, N. Urakawa, T. Nakamura, M. Nishio, T. Watajima, D. Kuroda, T. Komori, Y. Kakeji, S. Semba, and H. Yokozaki. Tumor associated macrophage expressing CD204 is associated with tumor aggressiveness of esophageal squamous cell carcinoma. Cancer science. 104:1112-1119 (2013). 54.A. Chatterjee, C. Dimitropoulou, F. Drakopanayiotakis, G. Antonova, C. Snead, J. Cannon, R.C. Venema, and J.D. Catravas. Heat shock protein 90 inhibitors prolong survival, attenuate inflammation, and reduce lung injury in murine sepsis. American journal of respiratory and critical care medicine. 176:667-675 (2007). 55.S. Shebrainand A. Ramjit. Radicicol, a Hsp90 inhibitor, inhibits intestinal inflammation and leakage in abdominal sepsis. The Journal of surgical research(2013). 56.M.R. Jensen, J. Schoepfer, T. Radimerski, A. Massey, C.T. Guy, J. Brueggen, C. Quadt, A. Buckler, R. Cozens, M.J. Drysdale, C. Garcia-Echeverria, and P. Chene. NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast cancer research : BCR. 10:R33 (2008). 57.N. Gaspar, S.Y. Sharp, S.A. Eccles, S. Gowan, S. Popov, C. Jones, A. Pearson, G. Vassal, and P. Workman. Mechanistic evaluation of the novel HSP90 inhibitor NVP-AUY922 in adult and pediatric glioblastoma. Molecular cancer therapeutics. 9:1219-1233 (2010). 58.T.H. Oude Munnink, M.A. Korte, W.B. Nagengast, H. Timmer-Bosscha, C.P. Schroder, J.R. Jong, G.A. Dongen, M.R. Jensen, C. Quadt, M.N. Hooge, and E.G. Vries. (89)Zr-trastuzumab PET visualises HER2 downregulation by the HSP90 inhibitor NVP-AUY922 in a human tumour xenograft. European journal of cancer (Oxford, England : 1990). 46:678-684 (2010). 59.F. Martinon, K. Burns, and J. Tschopp. The Inflammasome. Molecular cell. 10:417-426 (2002). 60.A. Mayor, F. Martinon, T. De Smedt, V. Petrilli, and J. Tschopp. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nature immunology. 8:497-503 (2007). 61.C.B. Clark, M.J. Rane, D. El Mehdi, C.J. Miller, L.R. Sachleben, Jr., and E. Gozal. Role of oxidative stress in geldanamycin-induced cytotoxicity and disruption of Hsp90 signaling complex. Free radical biology & medicine. 47:1440-1449 (2009). 62.J. Madrigal-Matute, C.E. Fernandez-Garcia, C. Gomez-Guerrero, O. Lopez-Franco, B. Muñoz-Garcia, J. Egido, L.M. Blanco-Colio, and J.L. Martin-Ventura. HSP90 inhibition by 17-DMAG attenuates oxidative stress in experimental atherosclerosis. Cardiovascular research. 95:116-123 (2012). 63.M.W. Roomi, J.C. Monterrey, T. Kalinovsky, M. Rath, and A. Niedzwiecki. Patterns of MMP-2 and MMP-9 expression in human cancer cell lines. Oncology reports. 21:1323-1333 (2009). 64.Y. Gong, E. Hart, A. Shchurin, and J. Hoover-Plow. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. The Journal of clinical investigation. 118:3012-3024 (2008). 65.B.K. Eustace, T. Sakurai, J.K. Stewart, D. Yimlamai, C. Unger, C. Zehetmeier, B. Lain, C. Torella, S.W. Henning, G. Beste, B.T. Scroggins, L. Neckers, L.L. Ilag, and D.G. Jay. Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nature cell biology. 6:507-514 (2004). 66.T.S. Blackwelland J.W. Christman. Sepsis and cytokines: current status. British journal of anaesthesia. 77:110-117 (1996).
|