跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 20:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴柔雯
研究生(外文):Rou-Wen Lai
論文名稱:合成胺基苄衍生物為抗癌試劑
論文名稱(外文):Synthesis of Aminobenzyl Derivativesas Anticancer Agents
指導教授:劉景平劉景平引用關係
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:藥學系(碩博士班)
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:123
中文關鍵詞:組蛋白去乙醯酶組蛋白去乙醯基酶6單胺氧化酶組蛋白去甲基酶
外文關鍵詞:Histone deacetylasesHDAC6MAOLSD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
組蛋白去乙醯酶(histone deacetylase; HDAC)與癌細胞的生長相關,除了癌症
治療之外,也可作為其他疾病的治療標靶。目前已有兩個組蛋白去乙醯酶抑制劑
(HDACi) SAHA (ZolinzaR )與FK228 (IstodaxR ),分別在2006 和2009 年獲得美國
FDA 核准用於治療皮膚T 細胞淋巴瘤,除此之外,還有許多HDACi 正在臨床試
驗中。研究發現hydroxamic acid 結構在癌症的治療領域上為活性的部分,此類
抗癌藥物持續發展中。
在表觀遺傳中,組蛋白的乙醯化和去乙醯化是由兩種酵素所調節:組蛋白乙
醯轉移酶和組蛋白去乙醯酶。在細胞核內,組蛋白的乙醯化和去乙醯化過程是處
於動態帄衡的狀態,因為染色質的重塑會因為組蛋白的乙醯化和去乙醯化而使構
形不同,形成「開」與「關」之形狀產生,因此組蛋白在基因的表達上扮演重要
的角色。
現今對於組蛋白的研究著重在選擇性抑制劑的開發,特別是組蛋白去乙醯酶
6 (HDAC6),HDAC6 在許多訊號傳遞的路徑上具重要性,亦被認為是癌症治療
的標靶目標。本論文將tubastatin A 的結構特徵與雜環結合,設計與合成一系列
胺基苄化合物,期望選擇性抑制HDAC6 同時具有良好的抗癌活性。
近幾年雙效抑制劑的開發亦吸引許多研究學者的注意,透過兩個不同作用機
轉的分子進行結構結合,期望達到增加活性及降低副作用的效果。研究指出
pargyline 能誘導癌細胞週期停滯在G1 期並促進癌細胞凋亡,因此,本論文將組
蛋白去乙醯酶抑制劑與單胺氧化酶抑制劑相結合,設計與合成一系列含有
prop-2-ynylamine 之胺基苄化合物,期望能展現MAO/HDAC 雙重抑制效果,以
增強抗癌的效果。

英文摘要
Histone deacetylase plays an important role in the growth of cancer cells, and it
is considered as therapeutic targets of several diseases in addition to cancer. To date,
two HDACis, SAHA (Zolinza R ) and romodepsin (Istodax R ), have been approved
for the treatment of cutaneous T-cell lymphoma by FDA in 2006 and 2009. Moreover,
many HDACis have been developed and are undergoing clinical trials. Literature
survey indicated that hydroxamic acid moiety contributes the biological activity and
attracts numerous scientific attentions to this field.
In the epigenetic process, histone acetylation and deacetylation are regulated by
two enzymes: histone acetyltransferase and histone deacetylases. Histone acetylation
and deacetylation process is in dynamic equilibrium state in the nucleus, and they lead
to conformaitonal change of chromatin, which forms the conformations of “open ”
and “close”. Therefore, histone plays a significance role in gene expression.
Current study in HDAC is focused on the development of selective inhibitor,
specifically histone deacetylase 6 (HDAC6). In addition to its siginicant influence in
signaling pathway, it is recognized as a target for cancer treatment as well. This thesis
is aimed to combine the structural feature of tubastatin A with heterocyclic derivatives.
As a result, a series of aminobenzyl analogues is designed and synthesized as potent
anticancer agents with selective HDAC6 inhibitory activity.
Scientific attention is drawn to the development of compounds with dual functions
and fewer side effects by combining symbolic structures from compounds with
different mechanisms. Pargyline is reported inducing apoptosis through arresting the
cell cycle in G1 phase. With a goal to develop dual HDAC/MAO inhibitors with
potent anticancer activity, a series of prop-2-ynylamine-containing aminobenzyl
analogues was synthesized by hybridizing the structural properties of HDAC and
MAO inhibitors.

目錄
本文……………………………………………………………………II
表目錄…………………………………………………………………IV
流程目錄………………………………………………………………IV
圖目錄…………………………………………………………………V
中文摘要………………………………………………………………VI
英文摘要……………………………………………………………VII
壹、緒論........................................................................................................................1
1.1 前言1, 2.................................................................................................................1
1.2 染色質(Chromatin)3, 4 ..........................................................................................3
1.3 組蛋白去乙醯酶(Histone deacetylases;HDACs)4, 5.........................................4
1.4 組蛋白去乙醯酶(Histone deacetylases; HDACs)在癌症上扮演的角色8 ........8
1.5 組蛋白去乙醯酶抑制劑在不同疾病上的應用8..............................................10
1.6 組蛋白去乙醯酶抑制劑(Histone deacetylase inhibitors;HDACis)12, 13, 14 ....13
貳、選擇性抑制劑.....................................................................................................17
2.1 組蛋白去乙醯酶6 (Histone deacetylase 6;HDAC6)及其功能15, 16 ............17
2.2 組蛋白去乙醯酶6 (Histone deacetylases 6; HDAC6)在癌症上扮演的角色15 ,
16 ...............................................................................................................................19
2.3 組蛋白去乙醯基酶6 抑制劑(Histone deacetylase 6 inhibitors; HDAC6is)16 20
2.4 HDAC6 抑制劑之研究構想與設計..................................................................24
2.5 HDAC6 抑制劑之化學合成..............................................................................26
2.6 生物活性結果與討論........................................................................................29
參、雙效抑制劑.........................................................................................................30
3.1 單胺氧化酶19, 20 ................................................................................................30
3.1.1 單胺氧化酶種類19, 20 ....................................................................................30
3.1.2 單胺氧化酶分布(表五)19, 20...........................................................................31
3.2 同源性...............................................................................................................31
3.3 組蛋白甲基轉移酶(HMTs)及LSD1 在癌症上所扮演的角色25, 26 ............35
3.4 單胺氧化酶抑制劑19, 20 ...................................................................................37
3.5 組蛋白去乙醯基酶抑制劑與單胺氧化酶的抑制劑之雙效研究構想與設計............. 41
3.6 雙效抑制劑之化學合成(HDAC / MAO) ........................................................44
3.7 結果與討論........................................................................................................51
肆、結果與貢獻討論.................................................................................................52
伍、實驗部分.............................................................................................................53
5.1 實驗儀器與溶劑................................................................................................53
5.2 化合物實驗方法與光譜資料............................................................................55
1H-Indol-5-amine (40)………………………………………………………....55
III
Methyl 4-((1H-indol-5-ylamino)methyl)benzoate (43)…………………… …..56
4-((1H-Indol-5-ylamino)methyl)-N-hydroxybenzamide (46) ............................ 57
1H-Indol-6-amine (41) ....................................................................................... 58
Methyl 4-((1H-indol-6-ylamino)methyl)benzoate (44)………………………..59
4-((1H-Indol-6-ylamino)methyl)-N-hydroxybenzamide (47)…………………60
1-Methyl-5-nitro-1H-indole (49)………………………………………………61
Methyl 4-((1-methyl-1H-indol-5-ylamino)methyl)benzoate (51)……………..62
N-hydroxy-4-((1-methyl-1H-indol-5-ylamino)methyl)benzamide (52)……….63
Methyl 4-((1H-benzo [d] imidazol-2-ylamino)methyl)benzoate (54)…………64
1-(4-Methoxyphenylsulfonyl)-6-nitro-1H-indole (58)………………………...65
Methyl 4-((1-(4-methoxyphenylsulfonyl)-1H-indol-6-ylamino)methyl)benzoate (60)….66
Methyl 4-((methyl (prop-2-ynyl) amino) methyl) benzoate (95)……………...67
4-((Methyl (prop-2-ynyl) amino) methyl) benzoic acid (96)………………….68
N-hydroxy-4-((methyl (prop-2-ynyl) amino) methyl)benzamide (86)………...69
(4-((Methyl (prop-2-ynyl) amino) methyl) phenyl) methanol (98) .................... 70
4-((Methyl (prop-2-ynyl) amino) methyl) benzaldehyde (99)…………………71
(E)-Methyl 3-(4-((methyl (prop-2-ynyl) amino) methyl) phenyl) acrylate (100)........................... 72
Methyl 4-(4-((methyl (prop-2-ynyl) amino) methyl) benzylamino) benzoate (103)…………….73
N-(3-Nitrobenzyl)-N-methylprop-2-yn-1-amine (110) ...................................... 74
Methyl 4-((3-((methyl (prop-2-ynyl)amino)methyl)phenylamino)methyl)benzoate(114)…...75
N-(4-Nitrobenzyl)-N-methylprop-2-yn-1-amine (111)………………………...76
Methyl 4-((4-((methyl (prop-2-ynyl)amino)methyl)phenylamino)methyl) benzoate (115)…...77
Methyl 8-(3-((methyl (prop-2-ynyl )amino)methyl)phenylamino)-8-oxooctanoate (120)……..78
Methyl 8-(4-((methyl (prop-2-ynyl)amino)methyl)phenylamino)-8-oxooctanoate (121)……...79
陸、參考文獻.............................................................................................................80
柒、圖譜......................................................................................................................84

陸、參考文獻
1. http://www.who.int/topics/cancer/en/
2. http://www.hpa.gov.tw/BHPNet/Web/Index/Index.aspx
3. Barneda-Zahonero, B.; Parra, M. Histone deacetylases and cancer. Mol. Oncol.
2012, 6, 579-589.
4. Lorenzen, J. M.; Martino, F.; Thum, T. Epigenetic modifications in cardiovascular
disease. Basic Res Cardiol. 2012, 2012, 00395-012-0245-9:1-00395-012-0245-9:10
5. Ruijter, A. J.; van Gennip, A. H.; Caron, H. N.; Kemp, S.; van Kuilenburg, A. B.
Histone deacetylases (HDACs): characterization of the classical HDAC family.
Biochem. J. 2003 370, 737-749.
6. Carafa, V.; Miceli, M.; Altucci, L.; Nebbioso, A. Histone deacetylase inhibitors: a
patent review (2009 - 2011). Expert Opin. Ther. Pat. 2013, 23, 1-17.
7. Ropero, S.; Esteller, M. The role of histone deacetylases (HDACs) in human
cancer. Mol.Oncol. 2007, 1, 19-25.
8. Tang, J.; Yan, H.; Zhuang, S. Histone deacetylases as targets for treatment of
multiple diseases. Clin. Sci. 2013, 124, 651-662.
9. Dokmanovic, M.; Clarke, C.; Marks, P. A. Histone deacetylase inhibitors:
overview and perspectives. Mol. Cancer Res. 2007, 5, 981-989.
10. Ververis, K.; Hiong, A.; Karagiannis, T. C.; Licciardi, P. V. Histone deacetylase
inhibitors (HDACis): multitargeted anticancer agents. Biologics. 2013, 7, 47-60.
11. Perego, P.; Zuco, V.; Gatti, L.; Zunino, F. Sensitization of tumor cells by targeting
histone deacetylases. Biochem. Pharmacol. 2012, 83, 987-994.
12. Marks PA. The clinical development of histone deacetylase inhibitors as targeted
anticancer drugs. Expert Opin. Investig. Drugs. 2010, 19, 1049-1066.
13. Valente, S.; Mai, A. Small-molecule inhibitors of histone deacetylase for the
81
treatment of cancer and non-cancer diseases: a patent review (2011 - 2013). Expert
Opin. Ther. Pat. 2014, 24, 401-415.
14. Delcuve, G. P.; Khan, D. H.; Davie, J. R. Targeting class I histone deacetylases
in cancer therapy. Expert Opin. Ther. Targets. 2013, 17, 29-41.
15. Dallavalle, S.; Pisano, C.; Zunino, F. Development and therapeutic impact of
HDAC6-selective inhibitors. Biochem. Pharmacol. 2012, 84, 756-765.
16. Aldana-Masangkay, G. I.; Sakamoto, K. M. The role of HDAC6 in cancer. J.
Biomed. Biotechnol. 2011, 2011, 875824:1–875824:10.
17. Santo, L.; Hideshima, T.; Kung, A. L.; Tseng, J. C.; Tamang, D.; Yang, M.; Jarpe,
M.; van Duzer, J. H.; Mazitschek, R.; Ogier, W. C.; Cirstea, D.; Rodig, S.; Eda,
H.; Scullen, T.; Canavese, M.; Bradner, J.; Anderson, K. C.; Jones, S. S.; Raje,
N. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a
selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in
multiple myeloma. Blood. 2012, 119, 2579-2589.
18. Vishwakarma, S.; Iyer, L. R.; Muley, M.; Singh, P. K.; Shastry, A.; Saxena, A.;
Kulathingal, J.; Vijaykanth, G.; Raghul, J.; Rajesh, N.; Rathinasamy, S.;
Kachhadia, V.; Kilambi, N.; Rajgopal, S.; Balasubramanian, G.; Narayanan, S.
Tubastatin, a selective histone deacetylase 6 inhibitor shows anti-inflammatory
and anti-rheumatic effects. Int Immunopharmacol. 2013, 16, 72-78.
19. Kalin, J. H.; Butler, K. V.; Akimova, T.; Hancock, W. W.; Kozikowski, A. P.
Second-generation histone deacetylase 6 inhibitors enhance the
immunosuppressive effects of Foxp3+ T-regulatory cells. J. Med. Chem. 2012,
55, 639-651.
20. Lai, M. J.; Huang, H. L.; Pan, S. L.; Liu, Y. M.; Peng, C. Y.; Lee, H. Y.; Yeh, T.
K.; Huang, P. H.; Teng, C. M.; Chen, C. S.; Chuang, H. Y.; Liou, J. P. Synthesis
and biological evaluation of 1-arylsulfonyl-5-(N-hydroxyacrylamide)indoles as
82
potent histone deacetylase inhibitors with antitumor activity in vivo. J Med
Chem. 2012, 55, 3777-3791.
21. Bolasco, A.; Carradori, S.; Fioravanti, R. Focusing on new monoamine oxidase
inhibitors. Expert Opin. Ther. Pat. 2010, 20, 909-939.
22. Carradori, S.; Secci, D.; Bolasco, A.; Chimenti, P.; D''Ascenzio, M. Patent-related
survey on new monoamine oxidase inhibitors and their therapeutic potential.
Expert Opin. Ther. Pat. 2012, 22, 759-801.
23. Suzuki, T.; Miyata, N. Lysine demethylases inhibitors. J. Med. Chem. 2011, 54,
8236-8250.
24. Hojfeldt, J. W.; Agger, K.; Helin, K. Histone lysine demethylases as targets for
anticancer therapy. Nat. Rev. Drug Discov. 2013, 12, 917-930.
25. Klose, R. J.; Zhang, Y. Regulation of histone methylation by demethylimination
and demethylation. Nat. Rev. Mol. Cell Biol. 2007, 8, 307-318.
26. Rotili, D.; Mai, A. Targeting histone demethylases: a new avenue for the fight
against cancer. Genes. Cancer. 2011, 2, 663-679.
27. Albert, M.; Helin, K. Histone methyltransferases in cancer. Semin. Cell Dev. Biol.
2010, 21, 209-220.
28. Greer, E. L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and
inheritance. Nat. Rev. Genet. 2012, 13, 343-357.
29. Fortin, S.; Berube, G. Advances in the development of hybrid anticancer drugs.
Expert Opin Drug Discov. 2013, 8, 1029-1047.
30. Hwang, S. H.; Wagner, K. M.; Morisseau, C.; Liu, J. Y.; Dong, H.; Wecksler, A.
T.; Hammock, B. D. Synthesis and structure-activity relationship studies of
urea-containing pyrazoles as dual inhibitors of cyclooxygenase-2 and soluble
epoxide hydrolase. J Med Chem. 2011, 54, 3037-3050.
83
31. Wang, Z.; Bennett, E. M.; Wilson, D. J.; Salomon, C.; Vince, R. Rationally
designed dual inhibitors of HIV reverse transcriptase and integrase. J Med Chem.
2007, 50, 3416-3419.
32. Guerrant, W.; Patil, V.; Canzoneri, J. C.; Oyelere, A. K. Dual targeting of histone
deacetylase and topoisomerase II with novel bifunctional inhibitors. J Med Chem.
2012, 55, 1465-1477.
33. Schmidt, D. M.; McCafferty, D. G. trans-2-Phenylcyclopropylamine is a
mechanism-based inactivator of the histone demethylase LSD1. Biochemistry.
2007, 46, 4408-4416.
34. Lee, M. G.; Wynder, C.; Schmidt, D. M.; McCafferty, D. G.; Shiekhattar, R.
Histone H3 lysine 4 demethylation is a target of nonselective antidepressive
medications. Chem Biol. 2006, 13, 563-567.
35. Horiuchi, T.; Nagata, M.; Kitagawa, M.; Akahane, K.; Uoto, K. Discovery of
novel thieno[2,3-d]pyrimidin-4-yl hydrazone-based inhibitors of cyclin
D1-CDK4: synthesis, biological evaluation and structure-activity relationships.
Part 2. Bioorg Med Chem. 2009, 17, 7850-7860.
36. Nien, C. Y.; Chen, Y. C.; Kuo, C. C.; Hsieh, H. P.; Chang, C. Y.; Wu, J. S.; Wu, S.
Y.; Liou, J. P.; Chang, J. Y. 5-Amino-2-aroylquinolines as highly potent tubulin
polymerization inhibitors. J. Med. Chem. 2010, 53, 2309-2313.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top