跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:a8de:191f:a29b:1858) 您好!臺灣時間:2025/01/13 05:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐慧玲
研究生(外文):Hui-Ling Hsu
論文名稱:利用螢光染料進行聚合物微胞體的穩定性及穿皮之研究
論文名稱(外文):The study of polymeric micelles'' stability and transdermal penetration by fluorescence dye
指導教授:廖嘉鴻
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:藥學系(碩博士班)
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:73
中文關鍵詞:聚合物微胞體
外文關鍵詞:polymeric micelles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本論文是利用二種螢光染料的螢光共振能量轉移(Fluorescence
resonance energy transfer,FRET)探討聚合物微胞體(polymeric micelles),在可能影響其穩定性的因子:時間、存在環境、機械影響震盪三種存在下,進行聚合物微胞體的穩定評估。此外,亦利用FRET評估不同聚合物對於能量轉移的效益優劣。In vitro的部分,則是將聚合物微胞體與二種不同的螢光染料混合,經由Franz Diffusion Cell System觀察在穿皮的效益。
由實驗結果得知在0~8小時內,聚合物微胞體與螢光共振能量轉移比值,都能保持穩定的狀態;聚合物微胞體在不同稀釋濃度的環境下,其螢光共振能量轉移比值會隨著存在環境而受到影響;聚合物微胞體在受到機械震盪的影響下,其螢光共振能量轉移比值,仍能保持穩定的狀態。但在不同的聚合物微胞體,在不同濃度比例的螢光染料存在下,其螢光共振能量轉移則會有所不同。0~24小時的Franz Diffusion Cell System實驗,可以發現混合二種螢光染料的載體,能有效進行的穿皮。


The study used two fluorescence dyes’ Fluorescence resonance energy transfer (FRET) to evaluate the stability of polymeric micelles by timing, environment, and mechanical shake.Moreover, we also use FRET to evaluate pros and cons of different polymers’ energy transfer. In vitro, we formulated polymeric micelles and two fluorescence dyes and observed the transdermal permeation by Franz Diffusion Cell System.
The results found that polymeric micelles and two fluorescence dyes’ ratio can sustain stable during 0~8 hours. Polymeric micelles and two fluorescence dyes’ ratio we affected under concentration of different dilutions, and the ratio could maintain stable mechanical under shaking. However, the different polymeric micelles’ FRET was different under different concentration fluorescence dyes.During 0~24 hours of Franz Diffusion Cell System’s experiment, it were found that two fluorescence dyes’ could transdermal penetration.


目錄……………………………………………………………………………………3
附表目錄………………………………………………………………………………4
附圖目錄………………………………………………………………………………5
中文摘要………………………………………………………………………………7
英文摘要………………………………………………………………………………8
壹、緒論………………………………………………………………………………9
一、皮膚結構………………………………………………………………………9
二、經皮吸收的優點與阻礙………………………………………………………15
三、經皮吸收的途徑………………………………………………………………16
四、奈米粒子的藥物載體系統……………………………………………………18
五、利用螢光染料進行研究………………………………………………………21
貳、研究目的…………………………………………………………………………26
參、材料與研究方法…………………………………………………………………27
一、實驗試藥………………………………………………………………………27
二、實驗儀器………………………………………………………………………27
三、溶液、試劑製備………………………………………………………………28
四、實驗動物………………………………………………………………………30
五、研究方法………………………………………………………………………30
肆、結果與討論………………………………………………………………………39
1.Polymer(PM)的臨界微胞體濃度(Critical micelle concentration
CMC)……………………………………………………………………………39
2.螢光聚合物微胞體大小測定…………………………………………………49
3.二種螢光染料的光譜圖………………………………………………………52
4.聚合物微胞體的穩定性………………………………………………………54
5.環境的稀釋作用對於聚合物微胞體穩定性的影響…………………………57
6.機械性震盪作用對於聚合物微胞體安定性的影響…………………………60
7.不同種類5%聚合物微胞體所產生的Forster resonance energy transfer(FRET)效應……………………………………………………………………61
8.螢光聚合物微胞體的血液毒性(hemotoxicity)實驗………………………65
9.螢光聚合物微胞體穿皮實驗…………………………………………………66
伍、結論………………………………………………………………………………69
參考文獻……………………………………………………………………………70



1.Edwards, C. and R. Marks, Evaluation of biomechanical properties of human skin. Clinics in Dermatology, 1995. 13(4): p. 375-380.
2.Proksch, E., J.M. Brandner, and J.-M. Jensen, The skin: an indispensable barrier. Experimental Dermatology, 2008. 17(12): p. 1063-1072.
3.Gawkrodger, D.J., Dermatology: An Illustrated Colour Text. 2008: Churchill Livingstone Elsevier.
4.Williams, A., Transdermal and Topical Drug Delivery: From Theory to Clinical Practice. 2003: Pharmaceutical Press.
5.Narayan, R., Biomedical Materials. 2009: Springer.
6.Benson, H.A., Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv, 2005. 2(1): p. 23-33.
7.Hirao, T., Corneocyte Analysis. 2010: p. 705-714.
8.Bohling, A., et al., Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy. Skin Res Technol, 2014. 20(1): p. 50-7.
9.Farage, M.A., K.W. Miller, and H.I. Maibach, Textbook of Aging Skin. 2010: Springer.
10.Cevc, G., Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev, 2004. 56(5): p. 675-711.
11.Mueller, T., et al., Utility of whole blood impedance aggregometry for the assessment of clopidogrel action using the novel Multiplate analyzer--comparison with two flow cytometric methods. Thromb Res, 2007. 121(2): p. 249-58.
12.Del Rosso, J.Q. and J. Levin, The clinical relevance of maintaining the functional integrity of the stratum corneum in both healthy and disease-affected skin. J Clin Aesthet Dermatol, 2011. 4(9): p. 22-42.
13.Rawlings, A.V. and C.R. Harding, Moisturization and skin barrier function. Dermatol Ther, 2004. 17 Suppl 1: p. 43-8.
14.Bryant, R.A. and D.P. Nix, Acute and Chronic Wounds: Current Management Concepts. 2007: Mosby Elsevier.
15.Marks, J.G., J.J. Miller, and D.P. Lookingbill, Lookingbill and Marks'' Principles of Dermatology. 2006: Saunders Elsevier.
16.Habif, T.P., Clinical Dermatology. 2009: Elsevier Health Sciences.
17.Uong, A. and L.I. Zon, Melanocytes in development and cancer. J Cell Physiol, 2010. 222(1): p. 38-41.
18.Slominski, A., et al., Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev, 2004. 84(4): p. 1155-228.
19.Young, B., et al., Wheater''s Functional Histology: A Text and Colour Atlas. 2000: Churchill Livingstone.
20.Freinkel, R.K. and D.T. Woodley, The Biology of the Skin. 2001: Taylor & Francis.
21.Margetts, L. and R. Sawyer, Transdermal drug delivery: principles and opioid therapy. Continuing Education in Anaesthesia, Critical Care & Pain, 2007. 7(5): p. 171-176.
22.Prausnitz, M.R. and R. Langer, Transdermal drug delivery. Nat Biotechnol, 2008. 26(11): p. 1261-8.
23.Paudel, K.S., et al., Challenges and opportunities in dermal/transdermal delivery. Ther Deliv, 2010. 1(1): p. 109-31.
24.Benson, H.A. and S. Namjoshi, Proteins and peptides: strategies for delivery to and across the skin. J Pharm Sci, 2008. 97(9): p. 3591-610.
25.Hadgraft, J., Skin, the final frontier. Int J Pharm, 2001. 224(1-2): p. 1-18.
26.Nino, M., G. Calabro, and P. Santoianni, Topical delivery of active principles: the field of dermatological research. Dermatol Online J, 2010. 16(1): p. 4.
27.Lane, M.E., Skin penetration enhancers. Int J Pharm, 2013. 447(1-2): p. 12-21.
28.Vaibhav Rastogi, P.Y., Transdermal drug delivery system: An overview. Asian Journal of Pharmaceutics 2012. 6(3): p. 161-170.
29.Barry, B.W., Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci, 2001. 14(2): p. 101-14.
30.Mahapatro, A. and D.K. Singh, Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology, 2011. 9: p. 55.
31.Hood, R.R., et al., Microfluidic-enabled liposomes elucidate size-dependent transdermal transport. PLoS One, 2014. 9(3): p. e92978.
32.Kim, S., et al., Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv, 2010. 7(1): p. 49-62.
33.Chen, H., et al., Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo forster resonance energy transfer imaging. Langmuir, 2008. 24(10): p. 5213-7.
34.Chen, J.I. and W.C. Wu, Fluorescent polymeric micelles with aggregation-induced emission properties for monitoring the encapsulation of doxorubicin. Macromol Biosci, 2013. 13(5): p. 623-32.
35.M., R.M., An Introduction to Fluorescence Resonance Energy Transfer (FRET). Science Journal of Physics, August 2012. 2012.
36.Chemistry, U.D.D.o., ChemWiki: The Dynamic Chemistry Textbook. April 21, 2011.
37.Rao, V.G., et al., Study of fluorescence resonance energy transfer in zwitterionic micelle: ionic-liquid-induced changes in FRET parameters. J Phys Chem B, 2012. 116(39): p. 12021-9.
38.Liu, L., et al., Self-assembly of anionic gemini surfactant: fluorescence resonance energy transfer and simulation study. Langmuir, 2013. 29(17): p. 5132-7.
39.Kramer, H.E. and P. Fischer, The scientific work of Theodor Forster: a brief sketch of his life and personality. Chemphyschem, 2011. 12(3): p. 555-8.
40.Kasha, M., Characterization of electronic transitions in complex molecules. Discussions of the Faraday Society, 1950. 9(0): p. 14-19.
41.Mote, U.S., et al., Fluorescence resonance energy transfer from tryptophan to folic acid in micellar media and deionised water. J Photochem Photobiol B, 2011. 103(1): p. 16-21.
42.Aydin, B., et al., The fluorescence resonance energy transfer between dye compounds in micellar media. Dyes and Pigments, 2009. 81(2): p. 156-160.
43.Chen, H., et al., Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging. Proc Natl Acad Sci U S A, 2008. 105(18): p. 6596-601.
44.Cohen, L.A., Group-specific reagents in protein chemistry. Annu Rev Biochem, 1968. 37: p. 695-726.
45.Hunger, K., Industrial Dyes: Chemistry, Properties, Applications. 2007: Wiley.
46.Chen, H.T., et al., Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc, 2004. 126(32): p. 10044-8.
47.Kalyanasundaram, K. and J.K. Thomas, Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. Journal of the American Chemical Society, 1977. 99(7): p. 2039-2044.
48.Basu Ray, G., I. Chakraborty, and S.P. Moulik, Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J Colloid Interface Sci, 2006. 294(1): p. 248-54.
49.Ray, G.B., et al., Self-aggregation of alkyltrimethylammonium bromides (C10-, C12-, C14-, and C16TAB) and their binary mixtures in aqueous medium: a critical and comprehensive assessment of interfacial behavior and bulk properties with reference to two types of micelle formation. Langmuir, 2005. 21(24): p. 10958-67.
50.Treiner, C. and A. Makayssi, Structural micellar transition for dilute solutions of long chain binary cationic surfactant systems: a conductance investigation. Langmuir, 1992. 8(3): p. 794-800.
51.Kozlov, M.Y., et al., Relationship between Pluronic Block Copolymer Structure, Critical Micellization Concentration and Partitioning Coefficients of Low Molecular Mass Solutes. Macromolecules, 2000. 33(9): p. 3305-3313.
52.Alexandridis, P. and L. Yang, SANS Investigation of Polyether Block Copolymer Micelle Structure in Mixed Solvents of Water and Formamide, Ethanol, or Glycerol. Macromolecules, 2000. 33(15): p. 5574-5587.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top