|
1.Edwards, C. and R. Marks, Evaluation of biomechanical properties of human skin. Clinics in Dermatology, 1995. 13(4): p. 375-380. 2.Proksch, E., J.M. Brandner, and J.-M. Jensen, The skin: an indispensable barrier. Experimental Dermatology, 2008. 17(12): p. 1063-1072. 3.Gawkrodger, D.J., Dermatology: An Illustrated Colour Text. 2008: Churchill Livingstone Elsevier. 4.Williams, A., Transdermal and Topical Drug Delivery: From Theory to Clinical Practice. 2003: Pharmaceutical Press. 5.Narayan, R., Biomedical Materials. 2009: Springer. 6.Benson, H.A., Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv, 2005. 2(1): p. 23-33. 7.Hirao, T., Corneocyte Analysis. 2010: p. 705-714. 8.Bohling, A., et al., Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy. Skin Res Technol, 2014. 20(1): p. 50-7. 9.Farage, M.A., K.W. Miller, and H.I. Maibach, Textbook of Aging Skin. 2010: Springer. 10.Cevc, G., Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev, 2004. 56(5): p. 675-711. 11.Mueller, T., et al., Utility of whole blood impedance aggregometry for the assessment of clopidogrel action using the novel Multiplate analyzer--comparison with two flow cytometric methods. Thromb Res, 2007. 121(2): p. 249-58. 12.Del Rosso, J.Q. and J. Levin, The clinical relevance of maintaining the functional integrity of the stratum corneum in both healthy and disease-affected skin. J Clin Aesthet Dermatol, 2011. 4(9): p. 22-42. 13.Rawlings, A.V. and C.R. Harding, Moisturization and skin barrier function. Dermatol Ther, 2004. 17 Suppl 1: p. 43-8. 14.Bryant, R.A. and D.P. Nix, Acute and Chronic Wounds: Current Management Concepts. 2007: Mosby Elsevier. 15.Marks, J.G., J.J. Miller, and D.P. Lookingbill, Lookingbill and Marks'' Principles of Dermatology. 2006: Saunders Elsevier. 16.Habif, T.P., Clinical Dermatology. 2009: Elsevier Health Sciences. 17.Uong, A. and L.I. Zon, Melanocytes in development and cancer. J Cell Physiol, 2010. 222(1): p. 38-41. 18.Slominski, A., et al., Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev, 2004. 84(4): p. 1155-228. 19.Young, B., et al., Wheater''s Functional Histology: A Text and Colour Atlas. 2000: Churchill Livingstone. 20.Freinkel, R.K. and D.T. Woodley, The Biology of the Skin. 2001: Taylor & Francis. 21.Margetts, L. and R. Sawyer, Transdermal drug delivery: principles and opioid therapy. Continuing Education in Anaesthesia, Critical Care & Pain, 2007. 7(5): p. 171-176. 22.Prausnitz, M.R. and R. Langer, Transdermal drug delivery. Nat Biotechnol, 2008. 26(11): p. 1261-8. 23.Paudel, K.S., et al., Challenges and opportunities in dermal/transdermal delivery. Ther Deliv, 2010. 1(1): p. 109-31. 24.Benson, H.A. and S. Namjoshi, Proteins and peptides: strategies for delivery to and across the skin. J Pharm Sci, 2008. 97(9): p. 3591-610. 25.Hadgraft, J., Skin, the final frontier. Int J Pharm, 2001. 224(1-2): p. 1-18. 26.Nino, M., G. Calabro, and P. Santoianni, Topical delivery of active principles: the field of dermatological research. Dermatol Online J, 2010. 16(1): p. 4. 27.Lane, M.E., Skin penetration enhancers. Int J Pharm, 2013. 447(1-2): p. 12-21. 28.Vaibhav Rastogi, P.Y., Transdermal drug delivery system: An overview. Asian Journal of Pharmaceutics 2012. 6(3): p. 161-170. 29.Barry, B.W., Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci, 2001. 14(2): p. 101-14. 30.Mahapatro, A. and D.K. Singh, Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology, 2011. 9: p. 55. 31.Hood, R.R., et al., Microfluidic-enabled liposomes elucidate size-dependent transdermal transport. PLoS One, 2014. 9(3): p. e92978. 32.Kim, S., et al., Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv, 2010. 7(1): p. 49-62. 33.Chen, H., et al., Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo forster resonance energy transfer imaging. Langmuir, 2008. 24(10): p. 5213-7. 34.Chen, J.I. and W.C. Wu, Fluorescent polymeric micelles with aggregation-induced emission properties for monitoring the encapsulation of doxorubicin. Macromol Biosci, 2013. 13(5): p. 623-32. 35.M., R.M., An Introduction to Fluorescence Resonance Energy Transfer (FRET). Science Journal of Physics, August 2012. 2012. 36.Chemistry, U.D.D.o., ChemWiki: The Dynamic Chemistry Textbook. April 21, 2011. 37.Rao, V.G., et al., Study of fluorescence resonance energy transfer in zwitterionic micelle: ionic-liquid-induced changes in FRET parameters. J Phys Chem B, 2012. 116(39): p. 12021-9. 38.Liu, L., et al., Self-assembly of anionic gemini surfactant: fluorescence resonance energy transfer and simulation study. Langmuir, 2013. 29(17): p. 5132-7. 39.Kramer, H.E. and P. Fischer, The scientific work of Theodor Forster: a brief sketch of his life and personality. Chemphyschem, 2011. 12(3): p. 555-8. 40.Kasha, M., Characterization of electronic transitions in complex molecules. Discussions of the Faraday Society, 1950. 9(0): p. 14-19. 41.Mote, U.S., et al., Fluorescence resonance energy transfer from tryptophan to folic acid in micellar media and deionised water. J Photochem Photobiol B, 2011. 103(1): p. 16-21. 42.Aydin, B., et al., The fluorescence resonance energy transfer between dye compounds in micellar media. Dyes and Pigments, 2009. 81(2): p. 156-160. 43.Chen, H., et al., Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging. Proc Natl Acad Sci U S A, 2008. 105(18): p. 6596-601. 44.Cohen, L.A., Group-specific reagents in protein chemistry. Annu Rev Biochem, 1968. 37: p. 695-726. 45.Hunger, K., Industrial Dyes: Chemistry, Properties, Applications. 2007: Wiley. 46.Chen, H.T., et al., Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc, 2004. 126(32): p. 10044-8. 47.Kalyanasundaram, K. and J.K. Thomas, Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. Journal of the American Chemical Society, 1977. 99(7): p. 2039-2044. 48.Basu Ray, G., I. Chakraborty, and S.P. Moulik, Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J Colloid Interface Sci, 2006. 294(1): p. 248-54. 49.Ray, G.B., et al., Self-aggregation of alkyltrimethylammonium bromides (C10-, C12-, C14-, and C16TAB) and their binary mixtures in aqueous medium: a critical and comprehensive assessment of interfacial behavior and bulk properties with reference to two types of micelle formation. Langmuir, 2005. 21(24): p. 10958-67. 50.Treiner, C. and A. Makayssi, Structural micellar transition for dilute solutions of long chain binary cationic surfactant systems: a conductance investigation. Langmuir, 1992. 8(3): p. 794-800. 51.Kozlov, M.Y., et al., Relationship between Pluronic Block Copolymer Structure, Critical Micellization Concentration and Partitioning Coefficients of Low Molecular Mass Solutes. Macromolecules, 2000. 33(9): p. 3305-3313. 52.Alexandridis, P. and L. Yang, SANS Investigation of Polyether Block Copolymer Micelle Structure in Mixed Solvents of Water and Formamide, Ethanol, or Glycerol. Macromolecules, 2000. 33(15): p. 5574-5587.
|