跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 07:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉書伶
研究生(外文):Shu-Ling Liu
論文名稱:利用二維高效液相層析儀同時分離乳酸與3-羥基丁酸鏡像異構物
論文名稱(外文):Development of a two-dimensional HPLC system for the simultaneous determination of lactate and 3-hydroxybutyrate enantiomers
指導教授:許秀蘊許秀蘊引用關係
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:藥學系(碩博士班)
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:63
中文關鍵詞:乳酸3-羥基丁酸鏡像異構物分離高效液相層析儀
外文關鍵詞:Chiral separation2D-HPLCLactic acid3-Hydroxybutyric acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
此篇論文主在建立以二維液相層析儀同時分離乳酸 (Lactate)與3-羥基丁酸 (3-Hydroxybutyrate)鏡像異構物。將螢光衍生化試劑
4-(N-Chloroformylmethyl-N-methylamino)-7-nitro-2,1,3-benzoxadiazole (NBD-COCl)加入含有乳酸以及 3-羥基丁酸的溶液,將混合液置於60˚C 下加熱 15 分鐘,進行螢光衍生化反應後取 20 μL 注入液相層析
儀。在第一維的液相層析儀中,利用 capillary monolithic ODS 管柱可以成功分離乳酸與 3-羥基丁酸。在第二維的液相層析儀中利用QD-AX、KSAACSP-001S 管柱及不同比例之氰甲烷、甲醇與三氟乙酸所組成的移動相,來進行乳酸與 3-羥基丁酸鏡像異構物的分離。所得之最佳分離係數分別是 1.14 與 1.08,偵測極限(LOD)大約為 2 微毫莫爾 (2 fmol/inj)。利用此方法成功定量了生物檢體,如在健康人的血漿、尿液以及唾液中發現,無論是乳酸或是 3-羥基丁酸的鏡像異構物均存在人體中。未來此方法可望應用在釐清乳酸與 3-羥基丁酸的鏡像異構物與疾病之間的關聯性與其個別的生理意義。

A two-dimensional HPLC system has been established for the
simultaneous determination of lactate and 3-hydroxybutyrate enantiomers. Lactate and 3-hydroxybutyrate were derivatized with NBD-COCl, and heated at 60˚C for 15 min. In the first dimension, the lactate and 3-hydroxybutyrate were separated by a capillary monolithic ODS column. In the second dimension, various chiral stationary phases had been tested.
The lactate enantiomers can be separated by the QD-AX and the 3-hydroxybutyrate enantiomers can be separated by the KSAASCP-001S. The mobile phases were composed of acetonitrile, methanol and TFA. The separation factors are 1.14 and 1.08 respectively. The detection limit of lactate and 3-hydroxybutyrate are 2 fmol/injection. Now by using the 2D-HPLC system, we can separate lactate and 3-hydroxybutyrate enantiomers at the same time. We also examined this method in the clinical healthy human samples, and we can find that both the lactate and 3-hydroxybutyrate enantiomers exist on healthy human serum, urine and saliva.
In the end, we hope this method can be applied to various clinical disease samples and that will help us to clarify the role of these enantiomers.

目錄
目錄 ...................................... I
表目錄 .................................... V
圖目錄 ....................................VI
縮寫表 ................................... VII
中文摘要... ... .. .. .. .. .. .. .. .. ..VIII
Abstract ... .. .. .. .. .. .. .. .. .. .. ..IX
第一章 緒論 ............................... 1
第二章 文獻回顧 ........................... 3
第一節 乳酸.......................................................................... 3
2.1.1 乳酸的基本性質 ........................... 3
2.1.2 乳酸的來源 ............................... 4
2.1.3 乳酸的代謝與排除 ......................... 4
2.1.4 與 D-Lactate 相關的疾病.................... 5
第二節 3-羥基丁酸............................................................... 8
2.2.1 3-羥基丁酸的基本性質 ...................... 8
2.2.2 酮酸的來源 ............................... 9II
2.2.3 3-羥基丁酸的代謝與排除 ................... 10
2.2.4 與 3-羥基丁酸相關的疾病 .................. 10
第三節 乳酸與 3-羥基丁酸鏡像異構物之關聯性............. 12
第四節 乳酸與 3-羥基丁酸鏡像異構物之分析方法......... 14
2.4.1 乳酸鏡像異構物的分析方法 ................ 15
2.4.2 3-羥基丁酸鏡像異構物的分析方法 ........... 15
第三章 研究目的 ...........................17
第四章 實驗材料與方法 ......................18
第一節 實驗試料與儀器..................................................... 18
4.1.1 實驗試藥................................. 18
4.1.2 實驗儀器................................. 18
第二節 實驗方法 ................................................................ 21
4.2.1 實驗條件參數分析 ........................ 21
4.2.2 乳酸與 3-羥基丁酸鏡像異構物的分析方法 .... 22
4.2.3 分析方法之確效 .......................... 28
4.2.4 生物檢品之製備分析方法 .................. 30
第三節 統計分析方法 ........................................................ 31III
第五章 實驗結果 ...........................32
第一節 實驗條件參數分析結果......................................... 32
5.1.1 N-methylmorpholine 濃度測試結果 .......... 32
5.1.2 衍生化反應溫度條件結果 .................. 33
5.1.3 衍生化反應溫度條件結果 .................. 34
第二節 分析管柱分離結果................................................. 35
5.2.1 1D-HPLC ................................ 35
5.2.2 Enantiomers separation .................... 37
第三節 實驗分析方法確效結果......................................... 41
5.3.1 檢量線線性(Linearity)................. 41
5.3.2 精密度 (Precision) ...................... 44
5.3.3 準確度 (Accuracy) ....................... 44
第四節 生物檢品分析結果 ........................ 47
5.4.1 健康人血漿中乳酸與 3-羥基丁酸的表現 ...... 47
5.4.2 健康人尿液中乳酸與 3-羥基丁酸的表現 ...... 48
5.4.3 健康人唾液中乳酸與 3-羥基丁酸的表現 ...... 49
第六章 討論 ...............................50IV
第一節 利用 2D-HPLC分離乳酸與 3-羥基丁酸鏡像異構物
方法之建立.......................................................................... 50
第二節 利用 2D-HPLC測量乳酸與 3-羥基丁酸鏡像異構物
在健康人體內的表現 .......................................................... 53
6.2.1 健康人血漿中乳酸與 3-羥基丁酸的表現 .............. 53
6.2.2 健康人尿液中乳酸與 3-羥基丁酸的表現 ............... 54
6.2.3 健康人唾液中乳酸與 3-羥基丁酸的表現 ....... 55
第三節 乳酸與 3-羥基丁酸鏡像異構物之間的關聯性 . 56
第七章 結論 ...............................58
參考文獻 ..................................59

Brandt, Richard B. , Siegel, Stephen A. , Waters, Michael G. , & Bloch,
Michael H. . (1980). Spectrophotometric assay for D-(-)-lactate in
plasma. Analytical Biochemistry, 102(1), 39-46.
Cevasco, G., Piatek, A. M., Scapolla, C., & Thea, S. (2011). A simple,
sensitive and efficient assay for the determination of D- and
L-lactic acid enantiomers in human plasma by high-performance
liquid chromatography. Journal of Chromatography A, 1218(6),
787-792. doi: 10.1016/j.chroma.2010.12.041
Cevasco, G., Piatek, A. M., & Thea, S. (2014). HPLC determination of
D-3-hydroxybutyric acid by derivatization with a benzofurazan
reagent and fluorescent detection: application in the analysis of
human plasma. Clinica chimica acta, 429, 90-95. doi:
10.1016/j.cca.2013.11.030
Chen, Chien-Ming, Uen, Yih-Huei, Kuo, Chen-Yi, Huang, Tzu-Chuan, &
Lee, Jen-Ai. (2009). Fluorimetric Determination of
L-3-Hydroxybutyrate Concentrations in the Serum of Normal and
Aristolochic Acid-Treated Mice. In D. Ślęzak, T. Arslan, W.-C.
Fang, X. Song & T.-h. Kim (Eds.), Bio-Science and Bio-Technology
(Vol. 57, pp. 63-68): Springer Berlin Heidelberg.
Connor, H., Woods, H. F., & Ledingham, J. G. (1983). Comparison of the
kinetics and utilisation of D(-)-and L(+)-sodium lactate in normal
man. Annals of nutrition & metabolism, 27(6), 481-487.
Enerson, Bradley E. , & Drewes, Lester R. . (2003). Molecular features,
regulation, and function of monocarboxylate transporters:
implications for drug delivery. Journal of pharmaceutical sciences,
92(8).
Ewaschuk, J. B., Naylor, J. M., & Zello, G. A. (2005). D-lactate in human
and ruminant metabolism. The Journal of nutrition, 135(7),
1619-1625.
Fukushima, T., Lee, J. A., Korenaga, T., Ichihara, H., Kato, M., & Imai, K.
(2001). Simultaneous determination of D-lactic acid and
3-hydroxybutyric acid in rat plasma using a column-switching
HPLC with fluorescent derivatization with
4-nitro-7-piperazino-2,1,3-benzoxadiazole (NBD-PZ). Biomed
Chromatogr, 15(3), 189-195. doi: 10.1002/bmc.6060
Guiochon, Georges. (2007). Monolithic columns in high-performance
liquid chromatography. Journal of Chromatography A, 1168(1–2),
101-168. doi: http://dx.doi.org/10.1016/j.chroma.2007.05.090
Halperin, M. L., & Kamel, K. S. (1996). D-lactic acidosis: turning sugar
into acids in the gastrointestinal tract. Kidney international, 49(1),
1-8.
Hasegawa, H., Fukushima, T., Lee, J. A., Tsukamoto, K., Moriya, K., Ono,
Y., & Imai, K. (2003). Determination of serum D-lactic and L-lactic
acids in normal subjects and diabetic patients by column-switching
HPLC with pre-column fluorescence derivatization. Analytical and
bioanalytical chemistry, 377(5), 886-891. doi:
10.1007/s00216-003-2108-6
Hove, H. (1998). Lactate and short chain fatty acid production in the
human colon: implications for D-lactic acidosis, short-bowel
syndrome, antibiotic-associated diarrhoea, colonic cancer, and
inflammatory bowel disease. Danish medical bulletin, 45(1), 15-33.
Huang, T. C., Chen, S. M., Li, Y. C., & Lee, J. A. (2013). Urinary d-lactate
levels reflect renal function in aristolochic acid-induced
nephropathy in mice. Biomedical chromatography, 27(9),
1100-1106. doi: 10.1002/bmc.2908
Imai, K., Fukushima, T., & Yokosu, H. (1994). A novel electrophilic
reagent, 4-(N-chloroformylmethyl-N-methyl)amino-
7-N,N-dimethylaminosulphonyl-2,1,3-benzoxadiazole (DBD-COCl)
for fluorometric detection of alcohols, phenols, amines and thiols.
Biomedical chromatography, 8(3), 107-113. doi:
10.1002/bmc.1130080303
Inoue, Y., Shinka, T., Ohse, M., Ikawa, H., & Kuhara, T. (2006).
Application of optical isomer analysis by diastereomer
derivatization GC/MS to determine the condition of patients with
short bowel syndrome. J Chromatogr B Analyt Technol Biomed Life
Sci, 838(1), 37-42. doi: 10.1016/j.jchromb.2006.02.019
Kalapos, Miklos Peter. (1999). Methylglyoxal in living organisms:
Chemistry, biochemistry, toxicology and biological implications.
Toxicology Letters, 110(3), 145-175. doi:
http://dx.doi.org/10.1016/S0378-4274(99)00160-5
Kondoh, Y., Kawase, M., Kawakami, Y., & Ohmori, S. (1992).
Concentrations of D-lactate and its related metabolic intermediates
in liver, blood, and muscle of diabetic and starved rats. Research in 61
Experimental Medicine (Berl), 192(6), 407-414.
Kummel, Ladislav (1983). Possible interrelationship between
gluconeogenesis and ketogenesis in the liver. Bioscience Reports, 3,
643-646.
Li, Yi-Chieh, Tsai, Shin-Han, Chen, Shih-Ming, Chang, Ya-Min, Huang,
Tzu-Chuan, Huang, Yu-Ping, . . . Lee, Jen-Ai. (2012). Aristolochic
acid-induced accumulation of methylglyoxal and
Nε-(carboxymethyl)lysine: An important and novel pathway in the
pathogenic mechanism for aristolochic acid nephropathy.
Biochemical and Biophysical Research Communications, 423(4),
832-837. doi: http://dx.doi.org/10.1016/j.bbrc.2012.06.049
Lin, M. H., Chen, H. Y., Liao, T. H., Huang, T. C., Chen, C. M., & Lee, J.
A. (2011). Determination of time-dependent accumulation of
D-lactate in the streptozotocin-induced diabetic rat kidney by
column-switching HPLC with fluorescence detection. Journal of
chromatography. B, Analytical technologies in the biomedical and
life sciences, 879(29), 3214-3219. doi:
10.1016/j.jchromb.2011.02.015
Lincoln, B. C., Des Rosiers, C., & Brunengraber, H. (1987). Metabolism
of S-3-hydroxybutyrate in the perfused rat liver. Archives of
biochemistry and biophysics, 259(1), 149-156.
Marti, R., Varela, E., Segura, R. M., Alegre, J., Surinach, J. M., & Pascual,
C. (1997). Determination of D-lactate by enzymatic methods in
biological fluids: study of interferences. Clinical chemistry, 43(6 Pt
1), 1010-1015.
Metcalfe, H. K., Monson, J. P., Welch, S. G., & Cohen, R. D. (1986).
Inhibition of lactate removal by ketone bodies in rat liver. Evidence
for a quantitatively important role of the plasma membrane lactate
transporter in lactate metabolism. The Journal of clinical
investigation, 78(3), 743-747. doi: 10.1172/JCI112635
Oh, M. S., Uribarri, J., Alveranga, D., Lazar, I., Bazilinski, N., & Carroll,
H. J. (1985). Metabolic utilization and renal handling of D-lactate
in men. Metabolism, 34(7), 621-625.
Oh, Man S. , Phelps, Kenneth R. , Traube, Morris , Barbosa-Saldivar, Jose
L. , Boxhill, Carlton , & Carroll, Hugh J. . (1979). D-lactic acidosis
in a man with the short-bowel syndrome. The New England Journal
of Medicine, 301(5), 249-252. doi:
10.1056/NEJM19790802301050562
Ohmori, S., & Iwamoto, T. (1988). Sensitive determination of D-lactic
acid in biological samples by high-performance liquid
chromatography. Journal of chromatography, 431(2), 239-247.
Perlmuttera, David H. , Boylea, John T. , Camposa, Joseph M. , Eglera,
Joseph M. , & Watkinsa, John B. . (1983). d-Lactic acidosis in
children: An unusualmetabolic complication of small bowel
resection. The Journal of Pediatrics.
Phypers, B. (2006). Lactate physiology in health and disease. Continuing
Education in Anaesthesia, Critical Care & Pain, 6(3), 128-132. doi:
10.1093/bjaceaccp/mkl018
Randle, P. J. , Newsholme, E. A., & Garland, P. B. (1984). Regulation of
Glucose Uptake by Muscle. Biochemical Journal, 93, 652.
Reed, W. Douglas, & Ozand, Pinar T. (1980). Enzymes of
l-(+)-3-hydroxybutyrate metabolism in the rat. Archives of
Biochemistry and Biophysics, 205(1), 94-103. doi:
http://dx.doi.org/10.1016/0003-9861(80)90087-9
Scheijen, J. L., Hanssen, N. M., van de Waarenburg, M. P., Jonkers, D. M.,
Stehouwer, C. D., & Schalkwijk, C. G. (2012). L(+) and D(-)
lactate are increased in plasma and urine samples of type 2 diabetes
as measured by a simultaneous quantification of L(+) and D(-)
lactate by reversed-phase liquid chromatography tandem mass
spectrometry. Experimental diabetes research, 2012, 234812. doi:
10.1155/2012/234812
Smith, S. M., Eng, R. H., & Buccini, F. (1986). Use of D-lactic acid
measurements in the diagnosis of bacterial infections. The Journal
of infectious diseases, 154(4), 658-664.
Stephens, J. M., Sulway, M. J., & Watkins, P. J. (1971). Relationship of
blood acetoacetate and 3-hydroxybutyrate in diabetes. Diabetes,
20(7), 485-489.
Swiatek, K. R., Dombrowski, G. J., Jr., & Chao, K. L. (1984). The
metabolism of D- and L-3-hydroxybutyrate in developing rat brain.
Biochemical medicine, 31(3), 332-346.
Talasniemi, J. P., Pennanen, S., Savolainen, H., Niskanen, L., &
Liesivuori, J. (2008). Analytical investigation: assay of D-lactate in
diabetic plasma and urine. Clinical biochemistry, 41(13),
1099-1103. doi: 10.1016/j.clinbiochem.2008.06.011
Thornalley, P. J. (1990). The glyoxalase system: new developments
towards functional characterization of a metabolic pathway 63
fundamental to biological life. The Biochemical journal, 269(1),
1-11.
Tildon, J. Tyson, McKenna, MaryC, & Stevenson, JosephH, Jr. (1994).
Transport of 3-hydroxybutyrate by cultured rat brain astrocytes.
Neurochemical Research, 19(10), 1237-1242. doi:
10.1007/BF01006812
Tsai, Y. C., Liao, T. H., & Lee, J. A. (2003). Identification of
L-3-hydroxybutyrate as an original ketone body in rat serum by
column-switching high-performance liquid chromatography and
fluorescence derivatization. Analytical biochemistry, 319(1), 34-41.
Tsutsui, H., Mochizuki, T., Maeda, T., Noge, I., Kitagawa, Y., Min, J.
Z., . . . Toyo''oka, T. (2012). Simultaneous determination of
DL-lactic acid and DL-3-hydroxybutyric acid enantiomers in saliva
of diabetes mellitus patients by high-throughput LC-ESI-MS/MS.
Analytical and bioanalytical chemistry, 404(6-7), 1925-1934. doi:
10.1007/s00216-012-6320-0
Tubbs, P. K. (1965). The metabolism of D-alpha-hydroxy acids in animal
tissues. Annals of the New York Academy of Sciences, 119(3),
920-926.
Uribarri, J., Oh, M. S., & Carroll, H. J. (1998). D-lactic acidosis. A review
of clinical presentation, biochemical features, and pathophysiologic
mechanisms. Medicine (Baltimore), 77(2), 73-82.
Wright, M. R., & Jamali, F. (1993). Methods for the analysis of
enantiomers of racemic drugs application to pharmacological and
pharmacokinetic studies. J Pharmacol Toxicol Methods, 29(1), 1-9.
Zou, X. H., Li, H. M., Wang, S., Leski, M., Yao, Y. C., Yang, X. D., . . .
Chen, G. Q. (2009). The effect of 3-hydroxybutyrate methyl ester
on learning and memory in mice. Biomaterials, 30(8), 1532-1541.
doi: 10.1016/j.biomaterials.2008.12.012
Zou, Zhitian, Sasaguri, Shiro, Rajesh, Katare Gopalrao, & Suzuki, Ryoko.
(2002). dl-3-Hydroxybutyrate administration prevents myocardial
damage after coronary occlusion in rat hearts. American Journal of
Physiology - Heart and Circulatory Physiology, 283(5),
H1968-H1974. doi: 10.1152/ajpheart.00250.2002

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top