|
1. Patrick, G. L. An introduction to medicinal chemistry, 3rd ed. Oxford University Press, U.S.A. 2005. 2. The Department of Health (DOH). Available at http://www.doh.gov.tw/ 3. Available at: http://www.cream123.com/food/cancer_treatment/cancer.html/ 4. Schnur, R. C.; Corman, M. L.; Gallaschun, R. J.; Cooper, B. A.; Dee, M. F.; Doty, J. L.; Muzzi, M. L.; Moyer, J. D.; DiOrio, C. I.; Barbacci, E. G.; Miller, P. E.; O’Brien, A. T.; Morin, M. J.; Foster, B. A.; Pollack, V. A.; Savage, D. M.; Sloan, D. E.; Pustilnik, L. R.; Moyer M. P. Inhibition of the oncogene product p185erbB-2 in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives. J. Med. Chem. 1995, 38, 3806- 3812. 5. Woodhead, A. J; Angove, H.; Carr, M. G.; Chessari, G.; Congreve, M.; Coyle, J. E.; Cosme, J.; Graham, B.; Day, P. J.; Downham, R.; Fazal, L.; Feltell, R.; Figueroa, E.; Frederickson, M.; Lewis, J.; McMenamin, R.; Murray, C. W.; O’Brien, M. A.; Parra, L.; Patel, S.; Phillips, T.; Rees, D. C.; Rich, S.; Smith, D.-M.; Trewartha, G.; Vimkovic, M.; Williams, B.; Woolford, A. J. Discovery of (2,4-dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-yl-methyl)-1,3-dihydroisondol-2-yl]methanone (AT13387), a novel inhibitor of the molecular chaperone Hsp90 by fragment based drug design. J. Med. Chem. 2010, 53, 5956 −5969. 6. ClinicalTrial. Gov 7. Biamonte, M. A.; Van de Water, R.; Arndt, J. W.; Scannevin, R. H.; Perret, D.; Lee, W. C. Heat shock protein 90: inhibitors in clinical trials. J. Med. Chem. 2010, 53, 3–17. 8. Bukau, B.; Weissman, J.; Horwich, A. Molecular chaperones and protein quality control. Cell 2006, 125, 443-451. 9. Workman, P.; Burrows, F.; Neckers, L.; Rosen, N. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann. N.Y. Acad. Sci. 2007, 1113, 202-216. 10. Whitesell, L.; Lindquist, S. L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer 2005, 5, 761-772. 11. Zeng, Y.; Feng, H.; Graner, M. W.; Katsanis, E. Tumor-derived, chaperone-richcell lysate activates dendritic cells and elicits potent antitumor immunity. Blood, 2003, 101, 4485-4491. 12. Freeman, B. C.; Yamamoto, K. R. Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 2002, 296, 2232-2235. 13. Pearl, L. H.; Prodromou, C. Structure, function, and mechanism of the Hsp90 molecular chaperone. Adv. Protein Chem. 2001, 59, 157–186. 14. Prodromou, C.; Pearl, L. H. Structure and functional relationships of Hsp90. Curr. Cancer Drug Targets 2003, 3, 301-323. 15. Dutta, R.; Inouye, M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem. Sci. 2000, 25, 24-28. 16. Roe, S. M.; Ali, M. M. U.; Meyer, P.; Vaughan, C. K.; Panaretou, B.; Piper, P. W.; Prodromou, C.; Pearl, L. H.; The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50cdc37. Cell 2004, 116, 87-98. 17. Roe, S. M.; Prodromou, C.; O’Brien, R.; Ladbury, J. E.; Piper, P. W.; Pearl, L. H.; Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 1999, 42, 260-266. 18. Meyer, P.; Prodromou, C.; Hu, B.; Vaughan, C.; Roe, S. M.; Panaretou, B.; Piper, P. W.; Pearl, L. H. Structural and functional analysis of the middle segment of Hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol. Cell 2003, 11, 647-658. 19. Soti, C., Racz, A.; Csermely, P. A nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. J. Biol. Chem. 2002, 277, 7066-7075. 20. Meyer, P.; Prodromou, C.; Liao, C.; Hu, B.; Roe, S. M.; Vaughan, C. K. Vlasic, I.; Panaretou, B.; Piper, P. W.; Pearl, L. H. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. Embo J. 2004, 3, 511-519. 21. Panaretou, B.; Siligardi, G.; Meyer, P.; Maloney, A.; Sullivan, J.K.; Singh, S.; Millson, S. H. Clarke, P. A.; Naaby-Hansen, S.; Stein, R.; Cramer, R.; Mollapour, M.; Workman, P.; Piper, P. W.; Pearl, L. H.; Prodromou, C. Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol. Cell 2002, 10, 1307-1318. 22. Garnier, C.; Lafitte, D.; Tsvetkov, P. O.; Barbier, P.; Leclerc-Devin, J.; Millot, J.-C.; Briand, C.; Makarov, A. A.; Catelli, M. G.; Peyrot, V. Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain. J. Biol. Chem. 2002, 277, 12208-12214. 23. Smith, D. F.; Whitesell, L.; Nair, S. C.; Chen, S.; Prapapanich, V.; Rimerman, R. A. Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Mol. Cell. Biol. 1995, 15, 6804-6812. 24. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 1995, 80, 179-185. 25. Citri, A.; Harari, D.; Shohat, G.; Ramakrishnan, P.; Gan, J.; Lavi, S.; Eisenstein, M.; Kimchi, A.; Wallach, D.; Pietrokovski, S.; Yarden, Y.; Hsp90 recognizes a common surface on client kinases. J. Biol. Chem. 2006, 281, 14361-14369. 26. Beliakoff, J.; Bagatell, R.; Paine-Murrieta, G.; Hormone-refractory breast cancer remains sensitive to the antitumor activity of heat shock protein 90 inhibitors. Clin. Cancer Res. 2003, 9, 4961-4971. 27. Solit, D. B.; Zheng, F. F.; Drobnjak, M.; 17-Allylamino-17–demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/NEU and inhibits the growth of prostate cancer xenografts. Clin. Cancer Res. 2002, 8, 986-993. 28. Holt, S. E.; Aisner, D. L.; Baur, J.; Tesmer, V. M.; Dy, M.; Ouellette, M.; Trager, J. B.; Morin, G. B.; Toft, D. O.; Shay, J. W.; Wright, W. E.; White, M. A.; Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Devel. 1999, 13, 817-824. 29. Basso, A. D.; Solit, D. B.; Chiosis, G.; Giri, B.; Tsichlis, P.; Rosen, N. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J. Biol. Chem. 2002, 277, 39858-39866. 30. Isaacs, J. S.; Jung, Y. J.; Mimnaugh, E. G.; Martinez, A.; Cuttitta, F.; Neckers, L. M. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 α-degradative pathway. J. Biol. Chem. 2002, 277, 29936-29944. 31. Eustace, B. K.; Sakurai, T.; Stewart, J. K.; Yimlamai, D.; Unger, C.; Zehetmeier, C.; Lain, B.; Torella, C.; Henning, S. W.; Beste, G.; Scroggins, B. T.; Neckers, L.; Ilag, L. L.; Jay, D. G. Functional proteomic screens revealan essential extracellular role for hsp90 α in cancer cell invasiveness. Nature Cell Biol. 2004, 6, 507-514. 32. Munster, P. N., Marchion, D. C., Basso, A. D. & Rosen, N. Degradation of HER2 by ansamycins induces growth arrest and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 3''-kinase-AKT dependent pathway. Cancer Res. 2002, 62, 3132-3137. 33. Solit, D. B., Basso, A. D., Olshen, A. B., Scher, H. I. & Rosen, N. Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to taxol. Cancer Res. 2003, 63, 2139-2144. 34. Ge, J.; Normant, E.; Porter, J. R.; Ali, J. A.; Dembski, M. S.; Gao, Y.; Georges, A. T.; Grenier, L.; Pak, R. H.; Patterson, J.; Sydor, J. R.; Tibbits, T. T.; Tong, J. K.; Adams, J.; Palombella, V. J. Design, synthesis, and biological evaluation of hydroquinone derivatives of 17-amino-17-demethoxygeldanamycin as potent, water-soluble inhibitors of HSP90. J. Med. Chem. 2006, 49, 4606-4615. 35. Egorin, M. J.; Lagattuta, T. F.; Hamburger, D. R.; Covey, J. M.; White, K. D.; Musser, S. M.; Eiseman, J. L. Pharmacokinetics, tissue distribution and metabolism of 17-(dimethyl aminoethylamino)-17-demethoxygeldanamycin (NSC707545) in CD2F1 mice and Fischer 344 rats. Cancer Chemother Pharmacol. 2002, 49, 7-19. 36. Lee, J.; Grenier, L.; Holson, E.; Slocum, K.; Ge, J.; Normant, E.; Hoyt, J.; Cushing, J.; Sydor, J.; Wright, J. IPI-493, a potent, orally bioavailable Hsp90 inhibitor of the ansamycin Class. 20th EORTC-NCI-AACR Symposium on ‘Molecular Targets and Cancer Therapeutics’ 2008, Poster153. 37. Zhang, M. Q.; Gaisser, S.; Nur-E-Alam, M.; Sheehan, L. S.; Vousden, W. A.; Gaitatzis, N.; Peck, G.; Coates, N. J.; Moss, S. J.; Radzom, M.; Foster, T. A.; Sheridan, R. M.; Gregory, M. A.; Roe, S. M.; Prodromou, C.; Pearl, L.; Boyd, S. M.; Wilkinson, B.; Martin, C. J. Optimizing natural products by biosynthetic engineering: discovery of nonquinone Hsp90 inhibitors. J. Med. Chem. 2008, 51, 5494-5497. 38. Janin, Yves L. ATPase inhibitors of heat-shock protein 90, second season. Drug Discovery Today 2010, 15, 342-353. 39. Delmotte, P.; Delmotte-Plaque´e, J. A new antifungal substance of fungal origin. Nature 1953, 171, 344. 40. Soga, S.; Neckers, L.; Schulte, T. W.; Shiotsu, Y.; Akasaka, K.; Narumi, H.; Agatsuma, T.; Ikuina, Y.; Murakata, C.; Tamaoki, T.; Akinaga, S. KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules. Cancer Res. 1999, 59, 2931-2938. 41. Agatsuma, T.; Ogawa, H.; Akasaka, K.; Asai, A.; Yamashita, Y.; Mizukami, T.; Akinaga, S.; Saitoh, Y. Halohydrin and oxime derivatives of radicicol: synthesis and antitumor activities. Bioorg. Med. Chem. Lett. 2002, 10, 3445-3454. 42. Ikuina, Y.; Amishiro, N.; Miyata, M.; Narumi, H.; Ogawa, H.; Akiyama, T.; Shiotsu, Y.; Akinaga, S.; Murakata, C. Synthesis and antitumor activity of novel O-carbamoyl methyloxime derivative of radicicol. J. Med. Chem. 2003, 46, 2534-2541. 43. Brough, P. A.; Aherne, W.; Barril, X.; Borgognoni, J.; Boxall, K.; Cansfield, J. E.; Cheung, K.-M. J.; Collins, I.; Davies, N. G. M.; Drysdale, M. J.; Dymock, B.; Eccles, S. A.; Finch, H.; Fink, A.; Hayes, A.; Howes, R.; Hubbard, R. E.; James, K.; Jordan, A. M.; Lockie, A.; Martins, V.; Massey, A.; Matthews, T. P.; McDonald, E.; Northfield, C. J.; Pearl, L. H.; Prodromou, C.; Ray, S.; Raynaud, F. I.; Roughley, S. D.; Sharp, S. Y.; Surgenor, A.; Walmsley, D. L.; Webb, P.; Wood, M.; Workman, P.; Wright, L. 4,5-Diarylisoxazole HSP90 chaperone inhibitors: potential therapeutic agents for the treatment of cancer. J. Med. Chem. 2008, 51, 196-218. 44. Liou, J. P.; Wu, Z. Y.; Kuo, C. C.; Chang, C. Y.; Lu, P. Y.; Chen, C. M.; Hsieh, H. P.; Chang, J. Y.; Discovery of 4-amino and 4-hydroxy-1-aroylindoles as potent tubulin polymerization inhibitors. J. Med. Chem. 2008, 51, 4351-4355. 45. Norrild, Jens Christian et al. Preparation of 4-substituted-6-isopropylbenzene-1,3-diol compounds as inhibitors of heat shock protein 90 (HSP90) function. PCT Int. Appl. WO 2009066060 A2, May 28, 2009. 46. Samosorn, S.; Bremner, J. B.; Ball, A.; Lewis, K. Synthesis of functionalized 2-aryl-5-nitro-1H-indoles and their activity as bacterial NorA efflux pump inhibitors. Bioorg. Med. Chem. 2006, 14, 857-865. 47. Enomoto, T.; Girard, A. L.; Yasui, Y.; Takemoto, Y. Gold(I)-catalyzed tandem reactions initiated by hydroamination of alkynyl carbamates: application to the synthesis of nitidine. J. Org. Chem. 2009, 74, 9158-9464. 48. Xu, W. S.; Parmigiani, R. B.; Marks, P. A. Histone deacetylase inhibitors: molecular mechanism of action. Oncogene 2007, 26, 5541-5552. 49. Dokmanovic, M.; Clarke, C.; Marks, P. A. Histone deacetylase inhibitors: overview and perspectives. Mol. Cancer Res. 2007, 5, 981-989. 50. Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. Histone deacetylase inhibitors: from bench to clinic. J. Med. Chem. 2008, 51, 1505-1529. 51. Bieliauskas, A. V.; Pflum, M. K. H. Isoform-selective histone deacetylase inhibitors. Chem Soc Rev. 2008, 37, 1402-1413. 52. De Ruijter, A. J.; Van Gennip, A. H.; Caron, H. N.; Kemp, S.; Van Kuilenburg, A.B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003, 370, 737-749. 53. Butler, R.; Bates, G. P. Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nat. Rev Neurosci. 2006, 7, 784-796. 54. Finnin, M.S.; Donigian, J. R.; Cohen, A.; Richon, V. M.; Rifkind, R. A.; Marks, P.A.; Breslow, R.; Pavletich, N. P. Structure of a histone deacetylase homologue bound to TSA and SAHA inhibitors. Nature 1999, 401, 188-193. 55. Butler, K. V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.; Kozikowski, A. P.; Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am. Chem. Soc. 2010, 132, 10842-10846. 56. Warrel, R. P.; He, L.-Z.; Richon, V.; Calleja, E.; Pandolfi, P. P. Therapeutic targeting of transcription in acute promyelocitic leukemia by use of an inhibitor of histone deacetylases. J. Natl. Cancer Inst. 1998, 90, 1621-1625. 57. Wang, J.; Hoshino, T.; Redner, R. L.; Kajigaya, S.; Liu, J. M. ETO, fusion partner in t (8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 10860-10865. 58. Song, J.; Noh, J. H.; Lee, J. H.; Eun, J. W.; Kim, S. Y.; Lee, S. H.; Park, W. S.; Yoo, N. J.; Lee, J. Y.; Nam, S. W. Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS 2005, 113, 264-268. 59. Qian, D. Z.; Kachhap, S. K.; Collis, S. J.; Verheul, H. M. W.; Carducci, M. A.; Atadja, P.; Pili, R. Class II histone deacetylase are associated with VHL-indepen-dentregulation of hypoxia-inducible factor 1α. Cancer Res. 2006, 66, 8814–8821. 60. Witt, O.; Deubzer, H. E.; Milde, T.; Oehme, I. HDAC family: What are the cancer relevant targets? Cancer Lett. 2009, 277, 8-21. 61. Drummond, D. C.; Noble, C. O.; Kirpotin, D. B.; Guo, Z.; Scott, G. K.; Benz, C. C. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 495-528. 62. Minucci, S.; Pelicci, P. G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer 2006, 6, 38-51. 63. Thomas, E. A. Focal nature of neurological disorders necessitates isotype-selective histone deacetylase (HDAC) inhibitors. Mol. Neurobiol. 2009, 40, 33-45. 64. Boyault, C.; Sadoul, K.; Pabion, M.; Khochbin, S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene 2007, 26, 5468-5476. 65. Rodriguez-Gonzalez, A.; Lin, T.; Ikeda, A. K.; Simms-Waldrip, T.; Fu, C.; Sakamoto, K. M. Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation. Cancer Res. 2008, 68, 2557-2560. 66. Kalin, J.; Bergman, J. A. Development and therapeutic implications of selective histone deacetylase 6 inhibitors. J. Med. Chem. 2013, 56, 6297–6313. 67. Haggarty, S. J.; Koeller, K. M.; Wong, J. C.; Grozinger, C. M.; Schreiber, S. L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4389-4394. 68. Santo, L.; Hideshima, T.; Kung, A. L.; Tseng, J. C.; Tamang, D.; Yang, M.; Jarpe, M.; van Duzer, J. H.; Mazitschek, R.; Ogier, W. C.; Cirstea, D.; Rodig, S.; Eda, H.; Scullen, T.; Canavese, M.; Bradner, J.; Anderson, K. C.; Jones, S. S.; Raje, N. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 2012, 119, 2579-2589. 69. Hsieh, T. H.; Tsai, C. F.; Hsu, C. Y.; Kuo, P. L.; Lee, J. N.; Chai, C. Y.; Hou, M. F.; Chang, C. C.; Long, C. Y.; Ko, Y. C.; Tsai, E. M. Phthalates stimulate the epithelial to mesenchymal transition through an HDAC6-dependent mechanism in human breast epithelial stem cells. Toxicol. Sci. 2012, 128, 365-376. 70. Bazzaro, M.; Lin, Z.; Santillan, A.; Lee, M. K.; Wang, M. C.; Chan, K. C.; Bristow, R. E.; Mazitschek, R.; Bradner, J.; Roden, R. B. Ubiquitin proteasome system stress underlies synergistic killing of ovarian cancer cells by bortezomib and a novel HDAC6 inhibitor. Clin. Cancer Res. 2008, 14, 7340-7347. 71. Wang, L.; Xiang, S.; Williams, K. A.; Dong, H.; Bai, W.; Nicosia, S. V.; Khochbin, S.; Bepler, G.; Zhang, X. Depletion of HDAC6 enhances cisplatin-induced DNA damage and apoptosis in non-small cell lung cancer cells. PLoS One 2012, 7, e44265. 72. Kamemura, K.; Ito, A.; Shimazu, T.; Matsuyama, A.; Maeda, S.; Yao, T. P.; Horinouchi, S.; Khochbin, S.; Yoshida, M. Effects of down regulated HDAC6 expression on the proliferation of lung cancer cells. Biochem. Biophys. Res. Commun. 2008, 374, 84-89. 73. Bergman, J. A.; Woan, K.; Perez-Villarroel, P.; Villagra, A.; Sotomayor, E. M.; Kozikowski, A. P. Selective histone deacetylase 6 inhibitors bearing substituted urea linkers inhibit melanoma cell growth. J. Med. Chem. 2012, 55, 9891-9899. 74. Kerr, E.; Holohan, C.; McLaughlin, K. M.; Majkut, J.; Dolan, S.; Redmond, K.; Riley, J.; McLaughlin, K.; Stasik, I.; Crudden, M.; VanSchaeybroeck, S.; Fenning, C.; O’Connor, R.; Kiely, P.; Sgobba, M.; Haigh, D.; Johnston, P. G.; Longley, D. B. Identification of an acetylation-dependant Ku70/FLIP complex that regulates FLIP expression and HDAC inhibitor-induced apoptosis. Cell Death Differ. 2012, 19, 1317-1327. 75. Aldana-Masangkay, G. I.; Rodriguez-Gonzalez, A.; Lin, T.; Ikeda, A. K.; Hsieh, Y. T.; Kim, Y. M.; Lomenick, B.; Okemoto, K.; Landaw, E. M.; Wang, D.; Mazitschek, R.; Bradner, J. E.; Sakamoto, K. M. Tubacin suppresses proliferation and induces apoptosis of acute lymphoblastic leukemia cells. Leuk. Lymphoma 2011, 52, 1544-1555. 76. Hackanson, B.; Rimmele, L.; Benkisser, M.; Abdelkarim, M.; Fliegauf, M.; Jung, M.; Lubbert, M. HDAC6 as a target for antileukemic drugs in acute myeloid leukemia. Leuk. Res. 2012, 36, 1055-1062. 77. Hancock, W. W.; Akimova, T.; Beier, U. H.; Liu, Y.; Wang, L. HDAC inhibitor therapy in auto immunity and transplantation. Ann. Rheum. Dis. 2012, 71 (Suppl.2), i46−i54. 78. Beier, U. H.; Akimova, T.; Liu, Y.; Wang, L.; Hancock, W. W. Histone/protein deacetylases control Foxp3 expression and the heatshock response of T-regulatory cells. Curr. Opin. Immunol. 2011, 23, 670-678. 79. de Zoeten, E. F.; Wang, L.; Butler, K.; Beier, U. H.; Akimova, T.; Sai, H.; Bradner, J. E.; Mazitschek, R.; Kozikowski, A. P.; Matthias, P.; Hancock, W. W. Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3(+) T-regulatory cells. Mol. Cell. Biol. 2011, 31, 2066-2078. 80. Lee, J. Y.; Nagano, Y.; Taylor, J. P.; Lim, K. L.; Yao, T. P. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J. Cell Biol. 2010, 189, 671-679. 81. Chen, Y. T.; Zang, X. F.; Pan, J.; Zhu, X. L.; Chen, F.; Chen, Z. B.; Xu, Y. Expression patterns of histone deacetylases in experimental stroke and potential targets for neuro protection. Clin. Exp. Pharmacol. Physiol. 2012, 39, 751-758. 82. Martin, N. I.; Woodward, J. J.; Marletta, M. A.; NG-hydroxyguanidines from primary amines. Org. Lett. 2006, 8, 4035-4038.
|