|
1.Hornbeck P. Enzyme-linked immunosorbent assays. Current protocols in immunology / edited by John E Coligan [et al] 2001;Chapter 2:Unit 2.1. 2.Ayebazibwe C, Mwiine FN, Balinda SN, Tjornehoj K, Alexandersen S. Application of the Ceditest(R) FMDV type O and FMDV-NS enzyme-linked immunosorbent assays for detection of antibodies against Foot-and-mouth disease virus in selected livestock and wildlife species in Uganda. Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc 2012;24:270-6. 3.Huo SM, Yang H, Deng AP. Development and validation of a highly sensitive ELISA for the determination of pharmaceutical indomethacin in water samples. Talanta 2007;73:380-6. 4.Ravan H, Yazdanparast R. Loop region-specific oligonucleotide probes for loop-mediated isothermal amplification-enzyme-linked immunosorbent assay truly minimize the instrument needed for detection process. Analytical biochemistry 2013;439:102-8. 5.Yu FY, Gribas AV, Vdovenko MM, Sakharov IY. Development of ultrasensitive direct chemiluminescent enzyme immunoassay for determination of aflatoxin B1 in food products. Talanta 2013;107:25-9. 6.Wang Y, Wei D, Yang H, et al. Development of a highly sensitive and specific monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for detection of Sudan I in food samples. Talanta 2009;77:1783-9. 7.Wang Y, Yang H, Pschenitza M, et al. Highly sensitive and specific determination of mercury(II) ion in water, food and cosmetic samples with an ELISA based on a novel monoclonal antibody. Analytical and bioanalytical chemistry 2012;403:2519-28. 8.Grothaus GD, Bandla M, Currier T, et al. Immunoassay as an analytical tool in agricultural biotechnology. Journal of AOAC International 2006;89:913-28. 9.Cao B, He G, Yang H, Chang H, Li S, Deng A. Development of a highly sensitive and specific enzyme-linked immunosorbent assay (ELISA) for the detection of phenylethanolamine A in tissue and feed samples and confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Talanta 2013;115:624-30. 10.Han KC, Yang EG, Ahn DR. Elongated oligonucleotide-linked immunosorbent assay for sensitive detection of a biomarker in a microwell plate-based platform. Biosensors & bioelectronics 2013;50:421-4. 11.Wang G, Huang H, Zhang G, Zhang X, Fang B, Wang L. Dual amplification strategy for the fabrication of highly sensitive interleukin-6 amperometric immunosensor based on poly-dopamine. Langmuir : the ACS journal of surfaces and colloids 2011;27:1224-31. 12.Thaxton CS, Elghanian R, Thomas AD, et al. Nanoparticle-based bio-barcode assay redefines "undetectable" PSA and biochemical recurrence after radical prostatectomy. Proceedings of the National Academy of Sciences of the United States of America 2009;106:18437-42. 13.Butler JE, Ni L, Nessler R, et al. The physical and functional behavior of capture antibodies adsorbed on polystyrene. Journal of immunological methods 1992;150:77-90. 14.Kogot JM, Sarkes DA, Val-Addo I, Pellegrino PM, Stratis-Cullum DN. Increased affinity and solubility of peptides used for direct peptide ELISA on polystyrene surfaces through fusion with a polystyrene-binding peptide tag. BioTechniques 2012;52:95-102. 15.Chuang KH, Tzou SC, Cheng TC, et al. Measurement of poly(ethylene glycol) by cell-based anti-poly(ethylene glycol) ELISA. Analytical chemistry 2010;82:2355-62. 16.Olsson A, Eliasson M, Guss B, et al. Structure and evolution of the repetitive gene encoding streptococcal protein G. European journal of biochemistry / FEBS 1987;168:319-24. 17.Sjobring U, Bjorck L, Kastern W. Streptococcal protein G. Gene structure and protein binding properties. The Journal of biological chemistry 1991;266:399-405. 18.Omasa T, Onitsuka M, Kim WD. Cell engineering and cultivation of chinese hamster ovary (CHO) cells. Current pharmaceutical biotechnology 2010;11:233-40. 19.Aricescu AR, Owens RJ. Expression of recombinant glycoproteins in mammalian cells: towards an integrative approach to structural biology. Current opinion in structural biology 2013;23:345-56. 20.Vink T, Oudshoorn-Dickmann M, Roza M, Reitsma JJ, de Jong RN. A simple, robust and highly efficient transient expression system for producing antibodies. Methods (San Diego, Calif) 2014;65:5-10. 21.Sule SV, Cheung JK, Antochshuk V, et al. Solution pH that minimizes self-association of three monoclonal antibodies is strongly dependent on ionic strength. Molecular pharmaceutics 2012;9:744-51. 22.Arosio P, Rima S, Morbidelli M. Aggregation mechanism of an IgG2 and two IgG1 monoclonal antibodies at low pH: from oligomers to larger aggregates. Pharmaceutical research 2013;30:641-54. 23.Li CH, Narhi LO, Wen J, et al. Effect of pH, temperature, and salt on the stability of Escherichia coli- and Chinese hamster ovary cell-derived IgG1 Fc. Biochemistry 2012;51:10056-65. 24.Han J, Zhuo Y, Chai Y, et al. Ultrasensitive electrochemical strategy for trace detection of APE-1 via triple signal amplification strategy. Biosensors & bioelectronics 2013;41:116-22. 25.Yuan Y, He H, Lee LJ. Protein A-based antibody immobilization onto polymeric microdevices for enhanced sensitivity of enzyme-linked immunosorbent assay. Biotechnology and bioengineering 2009;102:891-901. 26.Lin YH, Chen YJ, Lai CS, et al. A negative-pressure-driven microfluidic chip for the rapid detection of a bladder cancer biomarker in urine using bead-based enzyme-linked immunosorbent assay. Biomicrofluidics 2013;7:24103. 27.Hagan S, Tomlinson A. Tear fluid biomarker profiling: a review of multiplex bead analysis. The ocular surface 2013;11:219-35.
|