跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/15 03:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃雨芳
研究生(外文):Yu-Fang Huang
論文名稱:BEND5基因於大腸直腸癌之分子變異及臨床相關性研究
論文名稱(外文):Molecular Alteration Analysis of BEND5 Gene and Its Clinical Significance in Colorectal cancer
指導教授:林若凱
指導教授(外文):Ruo-Kai Lin
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:生藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:54
中文關鍵詞:大腸直腸癌表顯遺傳抑癌基因
外文關鍵詞:Colorectal cancerepigenetictumor suppressor geneIllumina human methylation 450Ktumor suppressor gene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
  近年來,隨著環境及飲食習慣的改變,根據行政院衛生福利部國民健康局公布2011年台灣地區診斷為直腸結腸癌的個案有14040位,已躍為十大癌症發生率的第一名。儘管醫療的進步,直腸結腸癌的分子機轉仍尚未完全釐清。至今直腸結腸癌形成的原因是因為基因(genetic)和表顯遺傳(epigenetic) 修飾的改變所造成。而本研究目的找出大腸直腸癌具過度甲基化之基因BEND5,並深入探討BEND5 mRNA及啟 子甲基化之情形,於癌細胞中扮演的功能與角色之影響的致癌機轉,以助於了解BEND5於癌症變異情形及形成原因。
  本研究將從醫院取得的大腸直腸癌手術後臨床檢體,抽取DNA後做bisulfite convert DNA進行甲基化分析,利用Illumina Human Methylation450觀察到BEND5 promoter上有高度甲基化的情形;進一步以Real-time methylation specific PCR (qMSP) 偵測發現有82.35% (70/85位) BEND5 promoter上具高度甲基化的情形,特別是在有局部淋巴結轉移的病人癌組織中95.2% (20/21) (p= 0.030)。再利用Real-time PCR分析,相較於正常組織71% (24/34位) 病人的病灶BEND5 mRNA都是低表達。為了瞭解BEND5在癌細胞中所具有的功能,藉由大腸癌細胞株實驗將BEND5大量表現於大腸癌細胞中,可以看到細胞增殖的數目相對的比控制組少。若同時將大量表現BEND5的細胞剔除 BEND5 mRNA於細胞中的表現,其細胞增殖的數目回復到正常狀態。本研究推測BEND5在大腸癌形成可能扮演抑癌基因的角色。


Colorectal cancer (CRC) is the most frequently diagnosed cancer in Taiwan. Colorectal cancer occurrence rates have been increasing in recent years. It was the third leading cause of cancer death on 2011. DNA methylation is common abnormality in colorectal cancer (CRC). Aberrant promoter hypermethylation of TSG-associated CpG islands can lead to transcriptional silencing and result in tumorigenesis. DNA methylation is catalyzed by enzymes known as DNA methyltransferases. We applied Illumina human methylation 450K to identify loci hypermethylation in 26 primary CRCs relative to non-neoplastic colorectal tissue. A candidate tumor suppressor gene, BEND5 showed 82.35% (70 of 85) hypermethylation in colorectal tumors compared to matched normal colorectal tissues, especially in patients with metastasis in regional lymph nodes 95.2% (20/21) (p = 0.030). This CRC-associated hypermathylation events were evaluated by quantitative methylation specific real-time PCR (qMSP-PCR). Using real-time PCR found 71% (24 of 34) BEND5 mRNA expression was down-regulation in CRCs compared to matched normal colorectal tissues. Transient transfection of BEND5 and/or si-BEND5 found BEND5 could inhibit colon cancer cell proliferation. In addition, BEND5 was expressed in nucleus by detecting immunofluorescence when BEND5 was transfected into cell line. In conclusion, BEND5 alteration may play an important role in colorectal cancer. The predominana mechanisms of BEND5 inactivation were BEND5 promoter hypermathylation. The present study suggested that the alteration of BEND5 may be involved in tumor development. We thought BEND5 is a candidate tumor suppressor gene in colorectal cance.

目錄 I
表目錄 II
圖目錄 III
中文摘要 IV
Abstract VI
壹、緒論 1
第一節 大腸直腸癌簡介 1
第二節 基因與表顯遺傳的調控 2
第三節 DNA甲基化與致癌機制之關聯 6
第四節 BEND5基本介紹及與癌症之關係 8
貳、研究目標 11
參、實驗材料與方法 12
第一節 研究材料與試劑 12
第二節 儀器與設備 16
第三節 實驗方法 18
肆、實驗結果 27
第一節 BEND5基因啟動子過度甲基化情形 27
第二節 大腸癌病患BEND5之甲基化情形與病歷資料相關性 28
第三節 大腸癌患者BEND5 mRNA於病灶呈現低表達 29
第四節 轉染BEND5入DLD-1細胞對於細胞型態及生長速率之分
析 29
第五節 BEND5造成細胞週期分布的改變 30
第六節 細胞以si-DNMT1分析DNMT1對於BEND5的DNA甲基化及
基因表現 30
伍、結論與建議 32
附表 37
附圖 39
參考文獻 50


Abhiman, S., Iyer, L.M., and Aravind, L. (2008). BEN: a novel domain in chromatin factors and DNA viral proteins. Bioinformatics 24, 458-461.

Al-Sohaily, S., Biankin, A., Leong, R., Kohonen-Corish, M., and Warusavitarne, J. (2012). Molecular pathways in colorectal cancer. Journal of gastroenterology and hepatology 27, 1423-1431.

Ashktorab, H., Belgrave, K., Hosseinkhah, F., Brim, H., Nouraie, M., Takkikto, M., Hewitt, S., Lee, E.L., Dashwood, R.H., and Smoot, D. (2009). Global histone H4 acetylation and HDAC2 expression in colon adenoma and carcinoma. Digestive diseases and sciences 54, 2109-2117.

Bienz, M., and Clevers, H. (2000). Linking colorectal cancer to Wnt signaling. Cell 103, 311-320.

Caiafa, P., and Zampieri, M. (2005). DNA methylation and chromatin structure: the puzzling CpG islands. Journal of cellular biochemistry 94, 257-265.

Cancer Genome Atlas, N. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337.

Chadwick, B.P., and Willard, H.F. (2003). Chromatin of the Barr body: histone and non-histone proteins associated with or excluded from the inactive X chromosome. Human molecular genetics 12, 2167-2178.

Dai, Q., Ren, A., Westholm, J.O., Serganov, A.A., Patel, D.J., and Lai, E.C. (2013). The BEN domain is a novel sequence-specific DNA-binding domain conserved in neural transcriptional repressors. Genes & development 27, 602-614.

Davies, R.J., Miller, R., and Coleman, N. (2005). Colorectal cancer screening: prospects for molecular stool analysis. Nature reviews Cancer 5, 199-209.

Dawson, M.A., and Kouzarides, T. (2012). Cancer epigenetics: from mechanism to therapy. Cell 150, 12-27.

Deaton, A.M., and Bird, A. (2011). CpG islands and the regulation of transcription. Genes & development 25, 1010-1022.

Denis, H., Ndlovu, M.N., and Fuks, F. (2011). Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO reports 12, 647-656.

Esteller, M. (2008). Epigenetics in cancer. The New England journal of medicine 358, 1148-1159.

Feinberg, A.P. (2004). The epigenetics of cancer etiology. Seminars in cancer biology 14, 427-432.

Feinberg, A.P., and Vogelstein, B. (1983a). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89-92.

Feinberg, A.P., and Vogelstein, B. (1983b). Hypomethylation of ras oncogenes in primary human cancers. Biochemical and biophysical research communications 111, 47-54.

Jost, J.P., and Bruhat, A. (1997). The formation of DNA methylation patterns and the silencing of genes. Progress in nucleic acid research and molecular biology 57, 217-248.

Kambara, T., Simms, L.A., Whitehall, V.L., Spring, K.J., Wynter, C.V., Walsh, M.D., Barker, M.A., Arnold, S., McGivern, A., Matsubara, N., et al. (2004). BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut 53, 1137-1144.

Kanthan, R., Senger, J.L., and Kanthan, S.C. (2012). Molecular events in primary and metastatic colorectal carcinoma: a review. Pathology research international 2012, 597497.

Kibriya, M.G., Raza, M., Jasmine, F., Roy, S., Paul-Brutus, R., Rahaman, R., Dodsworth, C., Rakibuz-Zaman, M., Kamal, M., and Ahsan, H. (2011). A genome-wide DNA methylation study in colorectal carcinoma. BMC medical genomics 4, 50.

Kim, J.C., Choi, J.S., Roh, S.A., Cho, D.H., Kim, T.W., and Kim, Y.S. (2010). Promoter methylation of specific genes is associated with the phenotype and progression of colorectal adenocarcinomas. Annals of surgical oncology 17, 1767-1776.

Korutla, L., Wang, P.J., and Mackler, S.A. (2005). The POZ/BTB protein NAC1 interacts with two different histone deacetylases in neuronal-like cultures. Journal of neurochemistry 94, 786-793.

Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693-705.

Legolvan, M.P., Taliano, R.J., and Resnick, M.B. (2012). Application of molecular techniques in the diagnosis, prognosis and management of patients with colorectal cancer: a practical approach. Human pathology 43, 1157-1168.

Liang, G., Chan, M.F., Tomigahara, Y., Tsai, Y.C., Gonzales, F.A., Li, E., Laird, P.W., and Jones, P.A. (2002). Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Molecular and cellular biology 22, 480-491.

Markowitz, S.D., and Bertagnolli, M.M. (2009). Molecular origins of cancer: Molecular basis of colorectal cancer. The New England journal of medicine 361, 2449-2460.

Mori, Y., Olaru, A.V., Cheng, Y., Agarwal, R., Yang, J., Luvsanjav, D., Yu, W., Selaru, F.M., Hutfless, S., Lazarev, M., et al. (2011). Novel candidate colorectal cancer biomarkers identified by methylation microarray-based scanning. Endocrine-related cancer 18, 465-478.

Murcia-Nicolas, A., Bolbach, G., Blais, J.C., and Beaud, G. (1999). Identification by mass spectroscopy of three major early proteins associated with virosomes in vaccinia virus-infected cells. Virus research 59, 1-12.

Nakazawa, T., Kondo, T., Ma, D., Niu, D., Mochizuki, K., Kawasaki, T., Yamane, T., Iino, H., Fujii, H., and Katoh, R. (2012). Global histone modification of histone H3 in colorectal cancer and its precursor lesions. Human pathology 43, 834-842.

Ng, E.K., Chong, W.W., Jin, H., Lam, E.K., Shin, V.Y., Yu, J., Poon, T.C., Ng, S.S., and Sung, J.J. (2009). Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 58, 1375-1381.

Ngan, S., Stronach, E.A., Photiou, A., Waxman, J., Ali, S., and Buluwela, L. (2009). Microarray coupled to quantitative RT-PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells. Oncogene 28, 2051-2063.

Peddareddigari, V.G., Wang, D., and Dubois, R.N. (2010). The tumor microenvironment in colorectal carcinogenesis. Cancer microenvironment : official journal of the International Cancer Microenvironment Society 3, 149-166.

Rampalli, S., Pavithra, L., Bhatt, A., Kundu, T.K., and Chattopadhyay, S. (2005). Tumor suppressor SMAR1 mediates cyclin D1 repression by recruitment of the SIN3/histone deacetylase 1 complex. Molecular and cellular biology 25, 8415-8429.

Sakatani, T., Kaneda, A., Iacobuzio-Donahue, C.A., Carter, M.G., de Boom Witzel, S., Okano, H., Ko, M.S., Ohlsson, R., Longo, D.L., and Feinberg, A.P. (2005). Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science 307, 1976-1978.

Shen, L., Toyota, M., Kondo, Y., Lin, E., Zhang, L., Guo, Y., Hernandez, N.S., Chen, X., Ahmed, S., Konishi, K., et al. (2007). Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proceedings of the National Academy of Sciences of the United States of America 104, 18654-18659.

Siegel, R., Ma, J.M., Zou, Z.H., and Jemal, A. (2014). Cancer Statistics, 2014. Ca-Cancer J Clin 64, 9-29.

Slaby, O., Svoboda, M., Michalek, J., and Vyzula, R. (2009). MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Molecular cancer 8, 102.

Smith, G., Carey, F.A., Beattie, J., Wilkie, M.J., Lightfoot, T.J., Coxhead, J., Garner, R.C., Steele, R.J., and Wolf, C.R. (2002). Mutations in APC, Kirsten-ras, and p53--alternative genetic pathways to colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America 99, 9433-9438.

Suzuki, K., Suzuki, I., Leodolter, A., Alonso, S., Horiuchi, S., Yamashita, K., and Perucho, M. (2006). Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer cell 9, 199-207.

Toyota, M., Ahuja, N., Ohe-Toyota, M., Herman, J.G., Baylin, S.B., and Issa, J.P. (1999). CpG island methylator phenotype in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America 96, 8681-8686.

Turker, M.S., and Bestor, T.H. (1997). Formation of methylation patterns in the mammalian genome. Mutation research 386, 119-130.

Vilar, E., and Gruber, S.B. (2010). Microsatellite instability in colorectal cancer-the stable evidence. Nature reviews Clinical oncology 7, 153-162.

Warren, J.D., Xiong, W., Bunker, A.M., Vaughn, C.P., Furtado, L.V., Roberts, W.L., Fang, J.C., Samowitz, W.S., and Heichman, K.A. (2011). Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC medicine 9, 133.
行政院衛生福利部國民健康署,民國100年癌症登記報告,2014。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊