跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/09 10:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾知雋
研究生(外文):Jy-Jiunn Tzeng
論文名稱:利用積層製造之鐵磁性聚乳酸複合材料骨釘對於促進骨再生之效果
論文名稱(外文):The Bone Regeneration Effect of 3D Printed Ferromagnetic Magnetite-based Polylactide Composite Bone Screw
指導教授:黃豪銘
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:生醫材料暨組織工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:96
中文關鍵詞:加法製造四氧化三鐵奈米粒子聚乳酸骨再生
外文關鍵詞:Additive ManufacturingFe3O4 nona-particlePolylactideBone Regeneration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  追求傷患部的加速復元是永無止盡的課題,促進骨缺損部位的加速修復更是生醫材料與組織工程領域的重點研究之一。本研究以具可充磁特性之聚乳酸複合材料,配合射出成形及積層製造方法製做骨釘,並以實驗動物模式評估其促進骨復元的效果。此外,由於過去的研究發現植體表面微細螺紋(Micro-thread)結構有助於促進骨生長,因此在本實驗中,我們利用前述材料以積層製造法製作骨釘,並評估其層狀堆積時,於產物表面自然形成的沉積紋路對骨再生的影響。在材料方面,本研究利用具有可磁化及具生物相容性之含有20wt%四氧化三鐵的聚乳酸為材料,以含0wt%四氧化三鐵的聚乳酸材料為對照組,製成骨釘。在實驗方法上,於骨釘製作完成之後,首先對四氧化三鐵聚乳酸複合材料進行磁性檢測,確認其確能隨著四氧化三鐵含量的增加,提供較高的靜磁場。接著進行材料性質檢測實驗,以瞭解射出成形之骨釘與積層製造骨釘,在成份上含有與不含四氧化三鐵時,其物理性質與促進顯影效果上的差異,並以有限元素分析結果觀察微細螺紋結構的有無其應力分佈的情形。經由本研究計劃之動物實驗,觀察混有鐵磁性奈米粒子之聚乳酸骨釘能提供靜磁場刺激源,且對促進骨修復具有的正面效果,並同時有效地增進電腦斷層掃描時的顯影性。

To accelerate the patient’s recovery is one of the main targets in biomaterial and tissue engineering field. Thus, to encourage the bone healing is definitely important. In the past, researchers found that under the static magnetic field, the bone could heal faster. Polylactide is a biodegradable material that used in bone screws and overcomes the shortcoming of traditional metal materials, but this material is hard to observe with the computed tomography. The ferromagnetic particle under the nano size could be biocompatible, non-toxic and radiopaque. Based on these, we combine the ferromagnetic particle with polylactide and make it into composite. This material can be degraded and metabolized by human body.
Additive manufacturing (also known as 3D-printing, rapid prototyping) has substantial progress in recent years, and has been widely spread to many fields. Scientists noticed the high accuracy and low limitation of additive manufacturing can be appropriate used in medicine. For example, it can be used to mimic human tissues or organs, to create the scaffold for cell growth, or even to build prosthetics to replace malfunctioning body parts.
In this research, we adopt the 3D-printing technique to produce the biodegradable bone screws with the magnetite-based polylactide composite. In the bone screw strength test, we find the screws produced by 3D-printer are weaker than the screws made by injection molding. The screws made with pure polylactide are stronger than the screws which contained ferromagnetic particles. In animal study, we find the implant side with screws that contain ferromagnetic particles has more regenerated bone volume. The static magnetite field from the ferromagnetic nano particles within the polylactide plays an important role in the promotion of bone healing process.
  Although the bone screws fabricated by injection molding are stronger than the 3D-printed screws, the 3D-printed screws still have its advantage, such as more adjustability and lower cost for a small amount of production. From the animal study, we confirm the affection of different materials on the healing process.

中文摘要..................................................i
英文摘要.................................................ii
目錄.....................................................iv
第一章、 文獻探討........................................1
1-1、靜磁場及磁性奈米粒子促進骨修復................1
1-2、電腦斷層掃描的發展及應用......................1
1-3、可降解骨植入物的發展及研究....................3
1-4、骨植入物與表面微細螺紋的發展及研究............4
1-5、積層製造法於生醫材料領域的應用................6
1-6、研究動機與目的................................8
第二章、 研究方法........................................9
2-1、實驗流程......................................9
2-2、實驗材料準備..................................9
2-3、材料性質檢測.................................12
2-4、有限元素法...................................14
2-5、動物實驗.....................................17
第三章、 實驗結果.......................................24
3-1、材料性質檢測.................................24
3-2、有限元素法...................................25
3-3、動物實驗.....................................26
第四章、 研究結果與討論.................................30
4-1、材料性質.....................................30
4-2、微電腦斷層掃描...............................33
4-3、組織切片.....................................34
第五章、 結論...........................................37
第六章、 參考文獻.......................................38
附錄.....................................................46

吳亭霖,超順磁特性聚乳酸複合材料之製備與生物相容性測試,台北醫學大學生醫材料暨組織工程研究所,碩士論文,2013。

張瑾,張健,張純斌,黃仁芳,胡慧慧,傅振中,江麗麗,曾昊。一種可顯影可降解高分子複合材料及其製備。中華人民共和國國家知識產權局 發明專利申請,CN 101700418 A,2009。

魏志勇,齊民,桑琳。一種具有X光顯影功能的聚乳酸材料的製備方法。中華人民共和國國家知識產權局 發明專利申請,CN 102295736 A,2011。

Abrahamsson I, Berbludh T. Tissue characteristics at microthreaded implants: an experimental study in dogs. Clin Implant Dent Relat Res, 8: 107-113, 2006.

Ahmadi R, Malek M, Madaah Hosseini HR, Shokrgozar MA, Oghabian MA,Masoudi A, Gu N, ZhangY. Ultrasonic-assisted synthesis of magnetite based MRI contrast agent using cysteine as the biocapping coating. Mater Chem Phys, 131: 170-177, 2011.

Aldana PR, Wieder K, Postlethwait RA, James HE, Steinberg B. Ultrasound-aided fixation of biodegradable implants in pediatric craniofacial surgery. Pediatr Neurosurg, 47: 349-353, 2011.

ASTM International. Standard terminology for additive manufacturing technologies. ASTM, F2792-12a, 2012.

ASTM International. Standard test method for tensile properties of plastics. ASTM, D638-10, 2010.

Bergsma EJ, Rozema FR, Bos RR, de Bruijn WC. Foreign body reactions to resorbable poly(L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J Oral Maxillofac Surg, 51: 666-670, 1993.

Bos RR, Boering G, Rozema FR, Leemslag JW. Resorbable poly(L-lactide) plates and screws for the fixation of zygomatic fractures. J Oral Maxillofac Surg, 45: 751-753, 1987.

Bratu EA, Tandlich M, Shapira L. A rough surface implant neck with microthreads reduces the amount of marginal bone loss: a prospective clinical study. Clin Oral Implants Res, 20: 827-832, 2009.

Chowdhary R, Halldin A, Jimbo R, Wennerberg A. Influence of micro threads alteration on osseointegration and primary stability of implants: an FEA and in vivo analysis in rabbits. Clin Implant Dent Relate Res, doi: 10.1111/cid.12143, 2013.

Chowdary R, Jimbo R, Thomsen CS, Carlsson L, Wennerberg A. The osseointegration stimulatory effect of macrogeometry-modified implants: a study in the rabbits. Clin Oral Implants Res, doi: 10.1111/clr.12212., 2013.

Crump SS. Apparatus and method for creating three-dimensional objects. U.S. Patent, 5121329, 1992.

Cutright DE, Hunsuck EE, Beasley JD. Fracture reduction using a biodegradable material, polylactic acid. J Oral Surg, 29: 393-397, 1971.

Dickman C, Fessler RG, MacMillan M, Haid RW. Transpedicular screw-rod fixation of the lumbar spine: operative technique and outcome in 104 cases. J Neurosurg, 77: 860-870, 1992.

Essens S, Sacs BL, Drezyin V. Complications associated with the technique of pedicle screw fixation: a selected survey of ABC members. Spine, 18: 2231-2239, 1993.

Fearon JA, Munrp IR, Bruce DA. Observations on the use of rigid fixation of crainiofacial deformities in infants and young children. Plast Reconstr Surg, 95: 634-638, 1995.

Goiato MC, Santos MR, Pesqueira AA, Moreno A, dos Santos DM, Haddad MF. Prototyping for surgical and prosthetic treatment. J Craniofac Surg, 22: 914-917, 2011.

Hansson S. The implant neck: smooth or provided with retention elements. A biomechanical approach. Clin Oral Implant Res, 10: 394-405, 1999.

Huang HM, Lee SY, Yao WC, Lin CT, Yeh CY. Static magnetic fields up-regulate osteoblast maturity by affecting local differentiation factors. Clin Orthop Relat Res, 447: 201-208, 2006.

Hudieb MI, Wakabayashi N, Kasugai S. Magnitude and direction of mechanical stress at the osseointegrated interface of the microthread implant. J Periodontol, 82: 1061-1070, 2011.

Johnson MT, Waite LR, Nindl G. Noninvasive treatment of inflammation using electromagnetic fields: current and emerging therapeutic potential. Biomed Sci Instrum, 40: 469-474, 2004.

Kulkarni RK, Pani KC, Neuman C, Leonard F. Polylactic acid for surgical implants. Arch Surg, 93: 839-843, 1966.

Kwon YS, Namgoong H, Kim JH, Cho IH, Kim MD, Eom TG, Koo KT. Effect of microthreads on removal torque and bone-to-implant contact: an experimental study on miniature pigs. J Periodontal Impact Sci, 43: 41-46, 2013.

Lin SL, Yang JC, Ho KN, Wang CH, Yeh CW, Huang HM. Effect of compressive residual stress on the morphologic changes of fibroblast. Med Biol Eng Comput, 47: 1273-1279, 2009.

Mashiko T, Otani K, Kawano R, Konno T, Kaneko N, Ito Y, Watanabe E. Development of 3-dimensional hollow elastic-model for cerebral aneurysm clipping simulation enabling rapid and low-cost prototyping. World Neurosurg, doi: 10.1016, 2013.

Masoudi A, Madaah Hosseini HR, Shokrgozar MA, Ahmadi R, Oghabian MA. The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. Int J Pharm, 433: 129-141, 2012.

Meng J, Zhang Y, Qi X, Kong H, Wang C, Xu Z, Xie S, Gu N, Xu H. Paramagnetic nanofibrous composite films enhance the osteogenic responses of pre-osteoblast cells. Nanoscale, 2: 2565-2569, 2010.

Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol, 21: 157-161, 2003.

Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K. Can insertional torque predict screw loosening and related failures? An in vivo study of pedicle screw fixation augmenting posterior lumbar interbody fusion. Spine, 25: 858-864, 2000.

Park YS, Lee SP, Han CH, Kwon JH, Jung YC. The microtomographic evaluation of marginal bone resorption of immediately loaded scalloped design implant with various microthread configurations in canine mandible: pilot study. J Oral Implantol, 36: 357-362, 2010.

Peltoniemi HH, Tulamo RM, Toivonen T, Pihlajamaki HK, Pohjonen T, Tormala P, Waris T. Intraosseous plating: a new method for biodegradable osteofixation in craniofacial surgery. J Craniofac Surg, 9: 171-176, 1998.

Rasmusson L, Kahnberg KE, Tan A. Effects of implant design and surface on bone regeneration and implant stability: an experimental study in the dog mandible. Clin Implant Dent Relat Res, 3: 2-8, 2001.

Schweiger C, Pietzonka C, Heverhagen, J, Kissel T. Novel magnetic ironoxide nanoparticles coated with poly(ethylene imine)-g-poly(ethylene glycol)for potential biomedical application: synthesis, stability, cytotoxicity and MRimaging. Int J Pharm, 408: 130-137, 2011.

Shen YF, Tang J, Nie ZH, Wang YD, Renc Y, Zuo L. Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol, 68: 312-319, 2009.

Shin YK, Han CH, Heo SJ, Kim S, Chun HJ. Radiographic evaluation of marginal bone level around implants with different neck designs after 1 year. Int J Oral Maxillofac Implants, 21: 789-794, 2006.

Suuronen R, Kontio R, Ashammakhi N, Lindqvist C, Laine P. Bioabsorbable self-reinforced plates and screws in craniomaxillofacial surgery. Biomed Mater Eng, 14: 517-524, 2004.

Tamimi F, Torres J, Gbureck U, Lopez-Cabarcos E, Bassett DC, Alkhraisat MH, Barralet JE. Craniofacial vertical bone augmentation: a comparison between 3D printed monolithic monotite blocks and autologous onlay grafts in the rabbit. Biomaterials, 30: 6318-6326, 2009.

Tormala P, Rokkanen P, Laiho J, Tammimaki M, Vainionpaa S. Material for osteosynthesis devices. U.S. Patent, 4743257, 1988.


Wei J, Igarashi T, Okumori N, Maetani T, Liu BS, Yoshinari M. Influence of surface wettability on competitive protein adsorption and intial attachment of osteoblast. Biomed Mater, 4: Epub 045002, 2009.

Wittenberg RH, Shea M, Schwartz DE, Lee KS, White AA 3rd, Hayes WC. Importance of bone mineral density in instrumented spine fusions. Spine, 16: 647-652, 1991.

Wu Y, Jiang W, Wen X, He B, Zeng X, Wang G, Gu Z. A novel calcium phosphate ceramic-magnetic nanoparticle composite as a potential bone substitute. Biomed Mater, 5: Epub 15001, 2010.

Yang YX, Liu ML, Zhua H, Chena YR, Mua GJ, Liuc XN, Jiaa YQ. Preparation, characterization, magnetic property, and Mossbauer spectra of the β-FeOOH nanoparticles modified by nonionic surfactant. J Magn Magn Mater, 320: 132-136, 2008.

Yaremchuk MJ. Experimental studies addressing rigid fixation in craniofacial surgery. Clin Plast Surg, 21: 517-524, 1994.

Yilmaz C, Atalay B, Caner H, Altinors N. Augmentation of a loosened sacral pedicle screw with percutaneous polymethylmethacrylate injection. J Spinal Disord Tech, 19: 373-375, 2006.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top