(3.238.7.202) 您好!臺灣時間:2021/03/01 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:潘韞珊
研究生(外文):YUN-SHAN PAN
論文名稱:複合材料之研究:燒結溫度過程於微結構和化學成分的影響
論文名稱(外文):Research on Composites materials: Effects of the sinteringprocess on the microstructure and chemical composition
指導教授:洪景明
口試委員:歐士輔周幸華
口試日期:2013-12-14
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫療器材產業碩士專班
學門:商業及管理學門
學類:醫管學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:69
中文關鍵詞:燒結複合材料力學性能顯微結構
外文關鍵詞:SinteringCompositesMechanical propertiesMicroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
Abstract
In order to improve the mechanical properties of polycrystalline cubic
boron nitride (cBN) and titanium carbide (TiC) composites (cBN-TiC),
this study developed a two-step sintering process. The relationship
between microstructure (structure and chemical composition) and
mechanical properties for the cBN-TiC composites were investigated.
The results indicated that less byproducts were contained in the cBN-TiC
composites fabricated by the two-step sintering than those by a
conventional sintering. In addition, no byproducts or defects were
observed between cBN and TiC grains. The mechanical-test results
confirmed that the two-step sintering indeed promoted the hardness and
transverse rupture strength of the cBN-TiC composites.
Contents
Abstract..................................................................................................... I
Contents.................................................................................... ................II
Table captions..........................................................................................IV
Figure captions..........................................................................................V
Chapter 1 Introduction……………………………………………………1
Chapter 2 Experimental procedure……………………………………….3
2.1 Sample compaction and sintering…………………………………….3
2.2 Characteristics of sintered compacts…………………………………4
2.3 Structure observation…………………………………………………4
2.4 Surface roughness measuring instrument……………………………8
2.5 Atomic force microscopy (AFM)…………………………………...11
2.6 Contact angle……………………………..…………………………15
2.7 Chemical composition of sintered compacts………………………19
Chapter 3 Results and discussion………………………………………21
3.1 Chemical compositions…………………………………………….21
3.2 Microstructure………………………………………………………23
III
3.3 Physical and mechanical properties of the composites…………….24
3.4 Microstructure- mechanical properties relationship……………..…26
Chapter 4 Conclusions…………..………………………………………28
Reference………………………………………………………………29
Reference
[1] Hibbs J LE, Wentorf J RH, Borazon and Diamond Compact Tools.
High Temperatures and High Pressures. 1974;6:409-13.
[2] Hotta M, Goto T, Spark plasma sintering of TiN-cubic BN composites.
Journal of the Ceramic Society of Japan. 2010;118:137-40.
[3] Benkoa E, Barr TL, Hardcastle S, Hoppe E, Bernasik A, Morgiele J,
XPS study of the cBN-TiC system. Ceramics International.
2001;27:637-643.
[4] Benko E, Stanisław JS, Krolicka B, Wyczesany A, Barr TL, cBN-TiN,
cBN-TiC composites: chemical equilibria, microstructure and
hardness mechanical investigations. Diamond and Related Materials.
1999;8:1838-46.
[5] Ueda F, Yageta M, Tajima I, Microstructure and Mechanical
Properties of cBN-TiN Composites. Journal of Hard Materials.
1991;2:233-43.
[6] Rong X-Z, Tsurumi T, Fukunaga O, Yano T, High-pressure sintering
of cBN-TiN-Al composite for cutting tool application. Diamond and
Related Materials. 2002;11:280-6.
[7] Vallauri D, Adri’an ICA., Chrysanthou A, TiC–TiB2 composites: A
review of phase relationships, processing and properties. Journal of
the European Ceramic Society. 2008;28 :1697-713.
[8] Li J, Li F, Hu K, Zhou Y, Formation of TiB2/ TiN/ Ti(CN)
nanocomposite powder via high-energy ball milling and subsequent
heat treatment. Journal of Alloys and Compounds. 2002;334:253-60.
[9] Kir D, Islak S, C elik H, C elik E, Effect of the cBN Content and
Sintering Temperature on the Transverse Rupture Strength and
Hardness of cBN/Diamond Cutting Tools. Science of Sintering.
2012;44:235-43.
[10] Benko E, Klimczyk P, Morgiel J, Włochowicz A, Barr TL, Electron
microscopy investigations of the cBN–Ti compound composites.
Materials Chemistry and Physics. 2003 81 336-40.
[11] Benko E, Stanisław JS, licka BK, Wyczesany A, Barr TL, cBN–TiN,
cBN–TiC composites: chemical equilibria, microstructure and
hardness mechanical investigations. Diamond and Related Materials.
1999;8:1838-46.
[12] Wang B, Matsumaru K, Yang J, Fu Z, Ishizaki K, The Effect of cBN
Additions on Densification, Microstructure and Properties of WC–Co
Composites by Pulse Electric Current Sintering. Journal of American
Ceramic Society. 2012;95: 2499-503.
[13] L. Rangaraj, C. Divakar, V. Jayram, Reactive Hot Pressing of
Titanium Nitride-Titanium Dsboride Composites at Moderate
Pressures and Temperatures, Journal of American Ceramic Society 87
(2004) 1872-1878.
[14] J. Seidel, N. Claussen, J. Rodel, Reliability of Alumina Ceramics:
Effect of Grain Size, Journal of the Europea Ceramic Society 15
(1995) 395-404.
[15] K.-T. Chu, S.-F. Ou, S.-Y. Chen, S.-Y. Chiou, H.-H. Chou, K.-L. Ou,
Research of phase transformation induced biodegradable properties
on hydroxyapatite and tricalcium phosphate based bioceramic,
Ceramics International 39 (2) (2013) 1455-1462.
[16] S.-F. Ou, S.-Y. Chiou, K.-L. Ou, Phase transformation on
hydroxyapatite decomposition, Ceramics International doi:
10.1016/j.ceramint.2012.1010.1221.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔