(44.192.112.123) 您好!臺灣時間:2021/03/08 14:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周彥儒
研究生(外文):Y.R. CHOU
論文名稱:二氧化鈦表面處理在植體骨頭界面之生物機械性質
論文名稱(外文):TiO2-treated Surface Enhanced Biomechanical Behavior at Implant-bone Interface
指導教授:黃瓊芳
口試委員:周幸華陳順隆
口試日期:2013-12-27
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫療器材產業碩士專班
學門:商業及管理學門
學類:醫管學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:58
中文關鍵詞:生物力學有限元分析顳下顎關節置換von Mises應力
外文關鍵詞:biomechanicsfinite element analysisTMJ replacementvon Mises stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:23
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
Abstract
The purpose of this study is to investigate stresses resulting from different thicknesses of hydroxyapatite (HA) and titanium dioxide (TiO2) coated layers at the interface between temporomandibular joint (TMJ) replacements and bone using three-dimensional (3D) finite element models. Coated layers on dental replacements are a very important factor in successful clinical application of these replacements. Several studies have investigated finite element models for TMJs, but few have examined a model for TMJ replacements with coated layers. In this study, TMJ models were reconstructed using computer tomography data, and the effects of coated layer thickness on the stress field during jaw movement were investigated; this index has not yet been reported with respect to TMJ replacement. The maximum stresses in the bone occurred at the position of the first screw and decreased with increasing coating thickness. Data analysis indicated a greater decrease in this stress in the case of using replacements coated with TiO2 and HA layers, but the decreases were not significantly different between the two. Results confirmed that the coating layers improve biomechanical properties of the TMJ replacements and release abnormal stress concentration in them. The results of our study offer the potential clinical benefit of inducing superior biomechanical behavior in the TMJ replacement.
Contents
Abstract...............................................................................................................I
Contents............................................................................................................III
Figure captions.................................................................................................IV
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 MATERIALS AND METHODS 3
2.1 MATERIAL PROPERTIES AND MUSCLE FORCE………………3
2.2 CT IMAGE………………………………………………………………4
2.3 FEA……………………………………………………………………….5
CHAPTER 3 RESULTS 7
CHAPTER 4 DISCUSSION………………………………………………10
CHAPTER 5 CONCLUSION……………………………………………15
REFERENCE 16

Figure captions
Fig. 1 The scanning electron microscopy……………………………………19
Fig. 2 ET3000 surface roughness measuring instrument……………………20
Fig. 3 The schematic diagram of roughness Ra and Rq…………………….21
Fig. 4 Schematic diagram for a transmission electron microscope in image mode………………………………………………………………………22
Fig. 5 The transmission electron microscopy JEM-2100…………………..23
Fig. 6 An example of TEM sample preparation…………………………….24
Fig. 7 Horizontal CT image of the mandible…………….………………..25
Fig. 8 3D FEM model of the TMJ with replacement……………………...26
Fig. 9 3D meshed model of the TMJ with replacement…………………….27
Fig. 10 Von Mises stress distribution in the TMJ replacement coated 200μm A-TiO2 layer………………………………………………………….28
Fig. 11 Path plots of stresses in different thickness of coated TiO2 layers……………………………………………………………….29
Fig. 12 Path plots of stresses in different thickness of coated HA layers…………………………………………………………………30
Fig. 13 Highest von Mises stress distributions in implants of untreated group…………………………………………………………...……..31
Fig. 14 Highest von Mises stress distributions in implants of A-TiO2-50 group…………………………………………………………………32
Fig. 15 Highest von Mises stress distributions in implants of A-TiO2-100…………………………………………………………33
Fig. 16 Highest von Mises stress distributions in implants of A-TiO2-200 group………………………………………………………………..34
Fig. 17 Highest von Mises stress distributions in implants of R-TiO2-50 group………………………………………………………………….35
Fig. 18 Highest von Mises stress distributions in implants of R-TiO2-100 group….…………………………………………………………...….36
Fig. 19 Highest von Mises stress distributions in implants of R-TiO2-200 group……………………………………………………………..…37
Fig. 20 Highest von Mises stress distributions in implants of C-HA-50 group……………………………………………………...…………..38
Fig. 21 Highest von Mises stress distributions in implants of C-HA-100 group…………………………………………………………….……39
Fig. 22 Highest von Mises stress distributions in implants of C-HA-200 group……………………………………………………….…………40
Fig. 23 Highest von Mises stress distributions in implants of NC-HA-50 group.……………………………………………………………..…..41
Fig. 24 Highest von Mises stress distributions in implants of NC-HA-100 group…………………………………………………………….……42
Fig. 25 Highest von Mises stress distributions in implants of NC-HA-200 group…...........................................................................................…..43
Fig. 26 The highest stresses in different coated layers thickness in cortical bones……………………………………………………………….…44
Fig. 27 The highest stresses in different coated layers thickness in cancellous bones…………………………………………………………………45
Fig. 28 Highest von Mises stress distributions in bones of untreated group………………………………………………………….……..46
Fig. 29 Highest von Mises stress distributions in bones of A-TiO2-50 group……………………………………………………………….…47
Fig. 30 Highest von Mises stress distributions in bones of A-TiO2-100 group………………………………………………………...………..48
Fig. 31 Highest von Mises stress distributions in bones of A-TiO2-200 group………………………………………………………………..49
Fig. 32 Highest von Mises stress distributions in bones of R-TiO2-50 group……………………………………………………………….…50
Fig. 33 Highest von Mises stress distributions in bones of R-TiO2-100 group……...…………………………………………………………51
Fig. 34 Highest von Mises stress distributions in bones of R-TiO2-200 group………………………………………………………………….52
Fig. 35 Highest von Mises stress distributions in bones of C-HA-50 group………………………………………………………………...53
Fig. 36 Highest von Mises stress distributions in bones of C-HA-100 group…………………………………………………………………54
Fig. 37 Highest von Mises stress distributions in bones of C-HA-200 group…………………………………………………………………55
Fig. 38 Highest von Mises stress distributions in bones of NC-HA-50 group…………………………………………………………….……56
Fig. 39 Highest von Mises stress distributions in bones of NC-HA-100 group………………………………………………………………..57
Fig. 40 Highest von Mises stress distributions in bones of NC-HA-200 group….…………………………………………………………….58
[1] J.J. Buescher, American Family Physician, 76 (2007) 1477-1482.
[2] K.N. Kalpakci, V.P. Willard, M.E. Wong, K.A. Athanasiou, J Dent Res, (2010).
[3] J. Durham, J.G. Steele, R.W. Wassell, C. Exley, J Dent Res, 89 (2010) 827-830.
[4] H. Koh, P.G. Robinson, Journal of Oral Rehabilitation, 31 (2004) 287-292.
[5] T. Hansson, T. ?berg, G.E. Carlsson, S. Kopp, Acta Odontologica Scandinavica, 35 (1977) 77-83.
[6] E.A. Morra, A.S. Greenwald, J Bone Joint Surg Am, 87 (2005) 120-124.
[7] V.K. Goel, M.M. Panjabi, A.G. Patwardhan, A.P. Dooris, H. Serhan, J Bone Joint Surg Am, 88 (2006) 103-109.
[8] R.A. Poggie, T.R. Turgeon, R.D. Coutts, J Bone Joint Surg Am, 89 (2007) 367-375.
[9] M. Beek, J.H. Koolstra, L.J. van Ruijven, T.M.G.J. van Eijden, Journal of Biomechanics, 33 (2000) 307-316.
[10] E. Tanaka, D.P. Rodrigo, M. Tanaka, A. Kawaguchi, T. Shibazaki, K. Tanne, International Journal of Oral and Maxillofacial Surgery, 30 (2001) 421-430.
[11] P.S. Donzelli, L.M. Gallo, R.L. Spilker, S. Palla, Journal of Biomechanics, 37 (2004) 1787-1791.
[12] J.W. Osborn, Journal of Oral Rehabilitation, 12 (1985) 279-293.
[13] X.G. Ma, P. Liang, L. Miao, S.W. Bie, C.K. Zhang, L. Xu, J.J. Jiang, physica status solidi (b), 246 (2009) 2132-2139.
[14] Y. Han, S.H. Hong, K.W. Xu, Surface and Coatings Technology, 154 (2002) 314-318.
[15] W. Xue, C. Wang, R. Chen, Z. Deng, Materials Letters, 52 (2002) 435-441.
[16] A. Weijs, B. Hillen, Acta Anat, (1984) 129-138.
[17] M. Sevimay, F. Turhan, M.A. Kilicarslan, G. Eskitascioglu, The Journal of Prosthetic Dentistry, 93 (2005) 227-234.
[18] L.-H. Li, H.-W. Kim, S.-H. Lee, Y.-M. Kong, H.-E. Kim, Journal of Biomedical Materials Research Part A, 73A (2005) 48-54.
[19] B. Yang, M. Uchida, H.-M. Kim, X. Zhang, T. Kokubo, Biomaterials, 25 (2004) 1003-1010.
[20] E. Tanaka, K. Tanne, M. Sakuda, Medical Engineering & Physics, 16 (1994) 316-322.
[21] K. Brehnan, R.L. Boyd, J. Laskin, C.H. Gibbs, P. Mahan, Journal of Dental Research, 60 (1981) 1820-1824.
[22] R.J. Smith, American Journal of Physical Anthropology, 49 (1978) 341-349.
[23] E. Tanaka, K. Tanne, M. Sakuda, Medical Engineering & Physics, 16 (1994) 316-322.
[24] A. Kashi, A.R. Chowdhury, S. Saha, Journal of Dental Research, 89 (2010) 241-245.
[25] O. Kayabaşı, E. Yuzbasıoğlu, F. Erzincanlı, Advances in Engineering Software, 37 (2006) 649-658.
[26] M.C. Kennady, M.R. Tucker, G.E. Lester, M.J. Buckley, International Journal of Oral and Maxillofacial Surgery, 18 (1989) 170-174.
[27] W. Jiang, W.D. Wang, X.H. Shi, H.Z. Chen, W. Zou, Z. Guo, J.M. Luo, Z.W. Gu, X.D. Zhang, Applied Surface Science, 255 (2008) 273-275.
[28] H.Z. Chen, W. Jiang, W. Zou, J.M. Luo, J.Y. Chen, C.Q. Tu, B.B. Xing, Z.W. Gu, X.D. Zhang, Applied Surface Science, 255 (2008) 276-278.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔