(3.237.97.64) 您好!臺灣時間:2021/03/03 08:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝宗龍
研究生(外文):Tsung-Lung Hsieh
論文名稱:鈦金屬表面形貌對骨母細胞型態之影響
論文名稱(外文):The effect of Ti surface morphology on the adhesion behavior of osteoblast-like cells
指導教授:施永勳
口試委員:歐士輔周幸華
口試日期:2013-12-14
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫療器材產業碩士專班
學門:商業及管理學門
學類:醫管學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:66
中文關鍵詞:陽極氧化有限元素分析應力
外文關鍵詞:anodizationfinite element analysisstress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
體外細胞反應被認為與基質的物理和化學性質有關聯。本研究中對不同化學組成和表面型態基質的鈦金屬表面進行MG- 63成骨細胞貼附評估,針對在鈦金屬表面不同處理:機械加工的孔洞與凹槽(control)、陽極氧化處理(AO)和陽極氧化伴隨水熱處理(HYT)三種類型。細胞貼附在經陽極氧化處理和陽極氧化伴隨水熱處理的表面於5小時後展現良好的伸展特性,將歸因於其化學因素,例如:
在表面包含鈣和磷。經24小時後,細胞完整平貼在經陽極氧化伴隨水熱處理的表面,但在只經陽極氧化處理的表面則沒有此效果,這說明提高細胞貼附行為還有物理因素,於特定表面形貌提供了細胞比較大的機械性刺激。進一步利用有限元方法評估細胞的應力分佈(P > 0.01 ),根據數據說明,對於經陽極氧化伴隨水熱處理的組別,細胞相較於其他表面處理接受到較大的應力刺激。
In vitro cell response is believed related to the physical and chemical properties of substrate. In this study, the cell adhesion affected by mechanical stimulation from substrate was evaluated by culturing the MG-63 osteoblast-like cells on Ti plates with different chemical composition and surface topography. Three types of surface, surface with machined grooves, with pores, and with pillars, was fabricated by mechanically abraded (control), anodized (AO) and anodized following with hydrothermally treated (HYT) Ti plates, individually. Cells exhibited earlier spreading on the AO and HYT surface after 5 hours culturing, resulted from chemical factor, i.e., calcium and phosphate containing on the surface. After 24 hours cells completely flattened on the HYT surface but not on the AO surface; this improved cell adhesion behavior was primarily attributed to physical factor that is specific surface topography provides cell relatively large mechanical stimulation. The finite element method was used to evaluate the stress distributions which cells were sufferentrol group (P > 0.01); therefore it can explain the fact that the superior cell adhesion resud. For the HYT group, analyzed data indicated that cell received larger stress stimulation than colted from the specific geometry of HYT coated-surface.
Contents
中文摘要..................................................................................................Ⅰ
Abstract.....................................................................................................Ⅱ
Contents................................................................................................. IV
Figure captions........................................................................................ VI
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 MATERIALS AND METHODS 4
2.1 Sample preparation and treated processes 4
2.2 Atomic force microscopy 5
2.3 Energy Dispersive X-ray Spectroscopy 8
2.4 Phase Identify by X-ray Diffraction Analysis 8
2.5 Transmission Electron Microscope 9
2.6 X-ray Photoelectron Spectroscopy 10
2.7 Scanning electron microscope 10
2.8 Optical microscopy 13
2.9 Secondary Ion Mass Spectrometry 18
2.10 Auger Electron Spectroscopy 18
2.11 Cell culture 20
2.12 Finite element analysis 21
2.13 Statistical Analysis 22
CHAPTER 3 RESULTS AND DISCUSSION 23
3.1 Surface Morphology 23
3.2 Microstructure 23
3.3 Cell adhesion 24
3.4 Finite element analysis 26
CHAPTER 4 CONCLUSION 30
REFERENCE 32
[1] Ou K-L, Wu J, Lai W-FT, Yang C-B, Lo W-C, Chiu L-H, et al. Effects of the nanostructure and nanoporosity on bioactive nanohydroxyapatite/reconstituted collagen by electrodeposition. Journal of Biomedical Materials Research Part A 2010;92A:906-12.
[2] Ou K-L, Chung R-J, Tsai F-Y, Liang P-Y, Huang S-W, Chang S-Y. Effect of collagen on the mechanical properties of hydroxyapatite coatings. Journal of the Mechanical Behavior of Biomedical Materials 2011;4:618-24.
[3] Ou S-F, Chou H-H, Lin C-S, Shih C-J, Wang K-K, Pan Y-N. Effects of anodic oxidation and hydrothermal treatment on surface characteristics and biocompatibility of Ti–30Nb–1Fe–1Hf alloy. Applied Surface Science 2012;258:6190-8.
[4] Lo C-M, Wang H-B, Dembo M, Wang Y-l. Cell Movement Is Guided by the Rigidity of the Substrate. Biophys J 2000;79:144-52.
[5] Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. Journal of Biomedical Materials Research 1995;29:1071-9.
[6] Ou S-F, Lin C-S, Pan Y-N. Formation of hydroxyapatite on low Young''s modulus Ti–30Nb–1Fe–1Hf alloy via anodic oxidation and hydrothermal treatment. Materials Science and Engineering: C 2009;29:2346-54.
[7] Ou S-F, Lin C-S, Pan Y-N. Microstructure and surface characteristics of hydroxyapatite coating on titanium and Ti-30Nb-1Fe-1Hf alloy by anodic oxidation and hydrothermal treatment. Surf Coat Technol 2011;205:2899-906.
[8] Cheng H-C, Lee S-Y, Chen C-C, Shyng Y-C, Ou K-L. Titanium nanostructural surface processing for improved biocompatibility. Applied Physics Letters 2006;89:173902--3.
[9] Ishizawa H, Fujino M, Ogino M. Histomorphometric evaluation of the thin hydroxyapatite layer formed through anodization followed by hydrothermal treatment. Journal of Biomedical Materials Research 1997;35:199-206.
[10] Ishizawa H, Ogino M. Hydrothermal precipitation of hydroxyapatite on anodic titanium oxide films containing Ca and P. Journal of Materials Science 1999;34:5893-8.
[11] Ito S, Takebe J. Longitudinal Observation of Thin Hydroxyapatite Layers Formed on Anodic Oxide Titanium Implants after Hydrothermal Treatment in a Rat Maxilla Model. Prosthodontic Research & Practice 2008;7:82-8.
[12] Suh J-Y, Jang B-C, Zhu X, Ong JL, Kim K. Effect of hydrothermally treated anodic oxide films on osteoblast attachment and proliferation. Biomaterials 2003;24:347-55.
[13] Takebe J, Ito S, Champagne CM, Cooper LF, Ishibashi K. Anodic oxidation and hydrothermal treatment of commercially pure titanium surfaces increases expression of bone morphogenetic protein-2 in the adherent macrophage cell line J774A.1. Journal of Biomedical Materials Research Part A 2007;80A:711-8.
[14] Li L-H, Kong Y-M, Kim H-W, Kim Y-W, Kim H-E, Heo S-J, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 2004;25:2867-75.
[15] Pelham RJ, Wang Y-l. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences 1997;94:13661-5.
[16] Himmlova L, Dostalova Tj, Kacovsky A, Konvic̆kova S. Influence of implant length and diameter on stress distribution: A finite element analysis. The Journal of Prosthetic Dentistry 2004;91:20-5.
[17] Teo EC, Ng HW. Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under compression and sagittal moments using finite element method. Medical Engineering & Physics 2001;23:155-64.
[18] Ferguson SJ, Bryant JT, Ganz R, Ito K. The influence of the acetabular labrum on hip joint cartilage consolidation: a poroelastic finite element model. Journal of Biomechanics 2000;33:953-60.
[19] Ou KL, Chang CC, Chang WJ, Lin CT, Chang KJ, Huang HM. Effect of damping properties on fracture resistance of root filled premolar teeth: a dynamic finite element analysis. International Endodontic Journal 2009;42:694-704.
[20] Sagvolden G, Giaever I, Pettersen EO, Feder J. Cell adhesion force microscopy. Proceedings of the National Academy of Sciences 1999;96:471-6.
[21] Discher DE, Janmey P, Wang Y-l. Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science 2005;310:1139-43.
[22] Ellingsen JE. A study on the mechanism of protein adsorption to TiO2. Biomaterials 1991;12:593-6.
[23] Lim Y, Kwon S, Sun D, Kim H, Kim Y. Enhanced Cell Integration to Titanium Alloy by Surface Treatment with Microarc Oxidation: A Pilot Study. Clinical Orthopaedics and Related ResearchR 2009;467:2251-8.
[24] Sul Y-T, Johansson C, Byon E, Albrektsson T. The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials 2005;26:6720-30.
[25] Wang N, Butler J, Ingber D. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993;260:1124-7.
[26] Halliday NL, Tomasek JJ. Mechanical Properties of the Extracellular Matrix Influence Fibronectin Fibril Assembly in Vitro. Exp Cell Res 1995;217:109-17.
[27] Schwarzbauer JE, Sechler JL. Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly. Curr Opin Cell Biol 1999;11:622-7.
[28] Choquet D, Felsenfeld DP, Sheetz MP. Extracellular Matrix Rigidity Causes Strengthening of Integrin–Cytoskeleton Linkages. Cell 1997;88:39-48.
[29] Vaillancourt H, Pilliar RM, McCammond D. Finite element analysis of crestal bone loss around porous-coated dental implants. J Appl Biomater 1995;6:267-82.
[30] Rohlmann A, Cheal EJ, Hayes WC, Bergmann G. A nonlinear finite element analysis of interface conditions in porous coated hip endoprostheses. J Biomech 1988;21:605-11.
[31] Shirazi-Adl A, Dammak M, Paiement G. Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants. Journal of Biomedical Materials Research 1993;27:167-75.
[32] Huang H-M, Ou K-L, Wang W-N, Chiu W-T, Lin C-T, Lee S-Y. Dynamic Finite Element Analysis of the Human Maxillary Incisor Under Impact Loading in Various Directions. Journal of Endodontics 2005;31:723-7.
[33] Jiang W, Wang WD, Shi XH, Chen HZ, Zou W, Guo Z, et al. The effects of hydroxyapatite coatings on stress distribution near the dental implant–bone interface. Applied Surface Science 2008;255:273-5.
[34] Tanaka E, Tanne K, Sakuda M. A three-dimensional finite element model of the mandible including the TMJ and its application to stress analysis in the TMJ during clenching. Medical Engineering & Physics 1994;16:316-22.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔