|
[1] Ou K-L, Wu J, Lai W-FT, Yang C-B, Lo W-C, Chiu L-H, et al. Effects of the nanostructure and nanoporosity on bioactive nanohydroxyapatite/reconstituted collagen by electrodeposition. Journal of Biomedical Materials Research Part A 2010;92A:906-12. [2] Ou K-L, Chung R-J, Tsai F-Y, Liang P-Y, Huang S-W, Chang S-Y. Effect of collagen on the mechanical properties of hydroxyapatite coatings. Journal of the Mechanical Behavior of Biomedical Materials 2011;4:618-24. [3] Ou S-F, Chou H-H, Lin C-S, Shih C-J, Wang K-K, Pan Y-N. Effects of anodic oxidation and hydrothermal treatment on surface characteristics and biocompatibility of Ti–30Nb–1Fe–1Hf alloy. Applied Surface Science 2012;258:6190-8. [4] Lo C-M, Wang H-B, Dembo M, Wang Y-l. Cell Movement Is Guided by the Rigidity of the Substrate. Biophys J 2000;79:144-52. [5] Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. Journal of Biomedical Materials Research 1995;29:1071-9. [6] Ou S-F, Lin C-S, Pan Y-N. Formation of hydroxyapatite on low Young''s modulus Ti–30Nb–1Fe–1Hf alloy via anodic oxidation and hydrothermal treatment. Materials Science and Engineering: C 2009;29:2346-54. [7] Ou S-F, Lin C-S, Pan Y-N. Microstructure and surface characteristics of hydroxyapatite coating on titanium and Ti-30Nb-1Fe-1Hf alloy by anodic oxidation and hydrothermal treatment. Surf Coat Technol 2011;205:2899-906. [8] Cheng H-C, Lee S-Y, Chen C-C, Shyng Y-C, Ou K-L. Titanium nanostructural surface processing for improved biocompatibility. Applied Physics Letters 2006;89:173902--3. [9] Ishizawa H, Fujino M, Ogino M. Histomorphometric evaluation of the thin hydroxyapatite layer formed through anodization followed by hydrothermal treatment. Journal of Biomedical Materials Research 1997;35:199-206. [10] Ishizawa H, Ogino M. Hydrothermal precipitation of hydroxyapatite on anodic titanium oxide films containing Ca and P. Journal of Materials Science 1999;34:5893-8. [11] Ito S, Takebe J. Longitudinal Observation of Thin Hydroxyapatite Layers Formed on Anodic Oxide Titanium Implants after Hydrothermal Treatment in a Rat Maxilla Model. Prosthodontic Research & Practice 2008;7:82-8. [12] Suh J-Y, Jang B-C, Zhu X, Ong JL, Kim K. Effect of hydrothermally treated anodic oxide films on osteoblast attachment and proliferation. Biomaterials 2003;24:347-55. [13] Takebe J, Ito S, Champagne CM, Cooper LF, Ishibashi K. Anodic oxidation and hydrothermal treatment of commercially pure titanium surfaces increases expression of bone morphogenetic protein-2 in the adherent macrophage cell line J774A.1. Journal of Biomedical Materials Research Part A 2007;80A:711-8. [14] Li L-H, Kong Y-M, Kim H-W, Kim Y-W, Kim H-E, Heo S-J, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 2004;25:2867-75. [15] Pelham RJ, Wang Y-l. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences 1997;94:13661-5. [16] Himmlova L, Dostalova Tj, Kacovsky A, Konvic̆kova S. Influence of implant length and diameter on stress distribution: A finite element analysis. The Journal of Prosthetic Dentistry 2004;91:20-5. [17] Teo EC, Ng HW. Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under compression and sagittal moments using finite element method. Medical Engineering & Physics 2001;23:155-64. [18] Ferguson SJ, Bryant JT, Ganz R, Ito K. The influence of the acetabular labrum on hip joint cartilage consolidation: a poroelastic finite element model. Journal of Biomechanics 2000;33:953-60. [19] Ou KL, Chang CC, Chang WJ, Lin CT, Chang KJ, Huang HM. Effect of damping properties on fracture resistance of root filled premolar teeth: a dynamic finite element analysis. International Endodontic Journal 2009;42:694-704. [20] Sagvolden G, Giaever I, Pettersen EO, Feder J. Cell adhesion force microscopy. Proceedings of the National Academy of Sciences 1999;96:471-6. [21] Discher DE, Janmey P, Wang Y-l. Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science 2005;310:1139-43. [22] Ellingsen JE. A study on the mechanism of protein adsorption to TiO2. Biomaterials 1991;12:593-6. [23] Lim Y, Kwon S, Sun D, Kim H, Kim Y. Enhanced Cell Integration to Titanium Alloy by Surface Treatment with Microarc Oxidation: A Pilot Study. Clinical Orthopaedics and Related ResearchR 2009;467:2251-8. [24] Sul Y-T, Johansson C, Byon E, Albrektsson T. The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials 2005;26:6720-30. [25] Wang N, Butler J, Ingber D. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993;260:1124-7. [26] Halliday NL, Tomasek JJ. Mechanical Properties of the Extracellular Matrix Influence Fibronectin Fibril Assembly in Vitro. Exp Cell Res 1995;217:109-17. [27] Schwarzbauer JE, Sechler JL. Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly. Curr Opin Cell Biol 1999;11:622-7. [28] Choquet D, Felsenfeld DP, Sheetz MP. Extracellular Matrix Rigidity Causes Strengthening of Integrin–Cytoskeleton Linkages. Cell 1997;88:39-48. [29] Vaillancourt H, Pilliar RM, McCammond D. Finite element analysis of crestal bone loss around porous-coated dental implants. J Appl Biomater 1995;6:267-82. [30] Rohlmann A, Cheal EJ, Hayes WC, Bergmann G. A nonlinear finite element analysis of interface conditions in porous coated hip endoprostheses. J Biomech 1988;21:605-11. [31] Shirazi-Adl A, Dammak M, Paiement G. Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants. Journal of Biomedical Materials Research 1993;27:167-75. [32] Huang H-M, Ou K-L, Wang W-N, Chiu W-T, Lin C-T, Lee S-Y. Dynamic Finite Element Analysis of the Human Maxillary Incisor Under Impact Loading in Various Directions. Journal of Endodontics 2005;31:723-7. [33] Jiang W, Wang WD, Shi XH, Chen HZ, Zou W, Guo Z, et al. The effects of hydroxyapatite coatings on stress distribution near the dental implant–bone interface. Applied Surface Science 2008;255:273-5. [34] Tanaka E, Tanne K, Sakuda M. A three-dimensional finite element model of the mandible including the TMJ and its application to stress analysis in the TMJ during clenching. Medical Engineering & Physics 1994;16:316-22.
|