跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/23 19:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂曼寧
研究生(外文):Man-Ning Lu
論文名稱:噴霧沉積硫化鎳鈷於染料敏化太陽能電池對電極之研究
論文名稱(外文):Spray-Deposited NiCo2S4 Based Materials As Counter Electrodes For Dye-Sensitized Solar Cells
指導教授:林正裕林正裕引用關係
指導教授(外文):Jeng-Yu Lin
口試委員:林正裕
口試委員(外文):Jeng-Yu Lin
口試日期:2014-06-27
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:106
中文關鍵詞:硫化鎳鈷染料敏化太陽能電池對電極
外文關鍵詞:dye-sensitized solar cellscounter electrodesNiCo2S4
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,硫化鎳鈷粒子由氯化鎳、氯化鈷及硫脲在水溶液中進行240℃,12小時之一步水熱法合成。而還原氧化石墨烯經由化學剝蝕和水熱還原處理的方式製備材料。進而摻混硫化鎳鈷粒子和還原氧化石墨烯,依照不同比例之還原氧化石墨烯(2,5,10wt%)與硫化鎳鈷粒子摻混於乙醇溶液中。根據X-射線衍射,拉曼光譜和掃描電子顯微鏡等儀器,證實硫化鎳鈷粒子和還原氧化石墨烯成功地合成出材料,並摻混為均勻相。在探討的過程中,利用不同比例的還原氧化石墨烯摻混入硫化鎳鈷粒子中可以得到有效的控制,相較於傳統的白金對電極而言,摻混硫化鎳鈷粒子和還原氧化石墨烯是得到較高的電子遷移動力與優秀電催化活性之關鍵。因此,實驗結果說明摻混硫化鎳鈷粒子和2wt%還原氧化石墨烯比例作為對電極表現出最好的催化活性與導電能力。此外,由電化學阻抗譜的測量,摻混硫化鎳鈷粒子和2wt%還原氧化石墨烯顯示出較優異的電極/電解質電荷轉移電阻(~0.35Ω)。另外,摻混硫化鎳鈷粒子和2wt%還原氧化石墨烯作為染料敏化太陽能電池得對電極展現出最突出的效率(8.04%),這比單純的硫化鎳鈷(7.03%)和白金(7.80%)作為對電極還來的高許多,歸因於摻混還原氧化石墨烯於硫化鎳鈷粒子中的最佳化比例。
In this study, NiCo2S4 was synthesized via a facile hydrothermal method by nickel chloride hexahydrate, cobalt chloride hexahydrate, and thiourea in aqueous solution and then reacting at 240℃, 12h. Subsequently, reduced graphene oxide (RGO) was synthesized by chemical exfoliation and hydrothermal reduction treatment. In the hybrid NiCo2S4/RGO materials, the different ratios (2, 5, 10 wt%) of RGO sheets were mixing with NiCo2S4 particles in ethanol. According to X-ray diffraction (XRD), Raman spectrum, and scanning electron microscope (SEM) confirmed that the NiCo2S4 particles and RGO were successfully synthesized and mixed homogeneous. As a result, the ratio of RGO hybrid into NiCo2S4 particles could be effectively controlled, which is crucial for RGO achieving of high electron transfer and electrocatalytic activity of NiCo2S4 particles compared to the conventional Pt counter electrode (CE). Therefore, the dye-sensitized solar cell (DSSC) assembled with hybrid NiCo2S4/RGO-2wt% exhibited the highest catalytic activity and the best conductivity. Moreover, the NiCo2S4/RGO-2wt% CE demonstrated an impressive lower electrode/electrolyte charge-transfer resistance (Rct 0.35 Ω). Also, the DSSC using NiCo2S4/RGO-2wt% as CE offered outstanding power conversion efficiency of 8.04%, which is much higher than NiCo2S4 (7.03%) and Pt (7.80%) CEs.
AbstractI
摘要II
ContentsIII
List of FiguresV
List of TablesIX
Chapter 1 Introduction1
Chapter 2 Literature Reviews6
2.1 Development of Solar Cell6
2.2 The Principles of Dye-Sensitized Solar Cell9
2.3 Operational Principle of Dye-Sensitized Solar Cell11
2.4 Components of Dye-Sensitized Solar Cell16
2.4.1 Substrate17
2.4.2 The Anode Materials of Dye-Sensitized Solar Cell19
2.4.3 Dye of Dye-Sensitized Solar Cell23
2.4.4 Electrolyte of Dye-Sensitized Solar Cell25
2.4.5 The Cathode Materials of Dye-Sensitized Solar Cell27
2.4.5.1 Platinum27
2.4.5.2 Carbon Materials 30
2.4.5.3 Conducting Polymers37
2.4.5.4 Metal Sulfide Materials40
2.4.5.5 Composites Counter Electrode48
2.5 Spray-Deposition Method for Counter Electrode53
2.6 Objective of this Study55
Chapter 3 Experimental Section57
3.1 Sample Preparation57
3.1.1 Preparation of NiCo2S458
3.1.2 Preparation of Reduced Graphene Oxide59
3.2 Preparation of Counter Electrode by Spray-Deposited60
3.3 Assembly of Dye-Sensitized Solar Cell60
3.4 Sample Characterization61
3.5 Principle of Instruments63
Experiment Flow Chart68
Chapter 4 Results And Discussion69
4.1 Hydrothermal Synthesis NiCo2S4 Powders69
4.1.1 Synthesis of NiCo2S4 with Different Metal Salts69
4.1.2 Synthesis of NiCo2S4 with Different Solvents and Time71
4.2 Synthesis of Reduced Graphene Oxide75
4.3 Composition of NiCo2S4/RGO Hybrid79
4.4 Electrochemical Properties of NiCo2S4/RGO Hybrids Counter Electrodes83
Chapter 5 Conclusions95
References97
[1] A. Einstein, On the Electrodynamics of Moving Bodies, 1905.
[2] B. Sen, Super-Powered Earth: Energy from the Rays of the Sun, 2008.
[3] D. R. Bates, A. E. Witherspoon, Mon Not R Astron Soc. 112 (1951) 101.
[4] J. Perlin, The Story of Solar Electricity, 2002.
[5] Guy Beaucarne, Advances in OptoElectronics 2007 (2007) 1.
[6] R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, N. H. Karam, Presented at the 24th European Photovoltaic Solar Energy Conference and Exhibition (2009) 21.
[7] B. O'regan, M, Gratzel, Nature 353 (1991) 737.
[8] G. Wanga, Z. Caia, F. Lia, S. Tanb, S. Xiea, J. Lic, J. Alloys Compd. 583 (2014) 414.
[9] K. L. Chopra1, P. D. Paulson, V. Dutta, Prog. Photovolt: Res. Appl. 12 (2004) 69.
[10] P. V. Kamat, J. Phys. Chem. Lett. 4 (2013) 908.
[11] K. D. G. I. Jayawardena, L. J. Rozanski, C. A. Mills, M. J. Beliatis, N. A. Nismy, S. R. P. Silva, Nanoscale 5 (2013) 8411.
[12] A. Kay, M. Graitzel, Sol. Energy Mater. Sol. Cells 44 (1996) 99
[13] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110 (2010) 6595.
[14] F. M. Gonzalez-Longatt, II cibelec 1 (2005) 1.
[15] S. Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M. H. Lee, W. Lee, J. Park, K. Kim, N. G. Park, C. Kim, Chem. Commun. 4887 (2007) 4887.
[16] N. Li, B. E. Lassiter, R. R. Lunt, G. Wei, S. R. Forrest, Appl. Phys. Lett. 94 (2009) 2307.
[17] S. Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M. H. Lee, W. Lee, J. Park, K. Kim, N. G. Park, C. Kim, Chem. Commun. 4887 (2007) 4887.
[18] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, Appl. Phys. Lett. 78 (2001) 841.
[19] H. Yu, S. Zhang, H. Zhao, G. Will, P. Liu, Electrochim. Acta 54 (2009) 1319.
[20] H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, N. Karam, Energy Environ. Sci. 2 (2009) 174.
[21] C. Yang, S. Lee, T. Lin, S. Chen, Thin Solid Films 516 (2008) 1984.
[22] D. J. Kwak, B. H. Moon, D. K. Lee, C. S. Park, Y. M. Sung, J. Electr. Eng. Technol. 6 (2011) 684.
[23] T. N. Murakami, Y. Kijitori, N. Kawashima, T. Miyasaka, J. Photoch. Photobio. A 164 (2004) 187.
[24] T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, Sol. Energy Mater. Sol. Cells 94 (2009) 812.
[25] M. I. Asghar, K. Miettunen, J. Halme , P. Vahermaa , M. Toivola , K. Aitola, Peter Lund, Energy Environ. Sci. 3 (2010) 418.
[26] S. Chappel, S. G. Chen, A. Zaban, Langmuir 18 (2002) 3336.
[27] J. Gong, J. Liang, K. Sumathy, Renew. Sust. Energ. Rev. 16 (2012) 5848.
[28] B. O’Regan, M. Gratzel, D. Fitzmaurice, Chem. Phys. Lett. 183 (1991) 89.
[29] Y. Liao, W. Que, Q. Jia, Y. He, J. Zhang, P. Zhong, J. Mater. Chem. 22 (2012) 7937.
[30] Q. Zhu1, J. Qian, H. Pan1, L. Tu1, X. Zhou1, Nanotechnology 22 (2011) 395703.
[31] K. Zhu, N. R. Neale, A. F. Halverson, J. Y. Kim, A. J. Frank, J. Phys. Chem. C 114 (2010) 13433.
[32] I. G. Valls, M. L. Cantu, Energy Environ. Sci. 2 (2009) 19.
[33] J. Chung, J. Lee, S. Lim, Physica B 405 (2010) 2593.
[34] K. Keis, J. Lindgren, S. E. Lindquist, A. Hagfeldt, Langmuir 16 (2000) 4688.
[35] X. Dou, D. Sabba, N. Mathews, L. H. Wong, Y. M. Lam, S. Mhaisalkar, Chem. Mater. 23 (2011) 3938.
[36] A. L. Viet, M. V. Reddy, R. Jose, B. V. R. Chowdari, S. Ramakrishna, J. Phys. Chem. C 114 (2010) 664.
[37] J. H. A. Acevedo, M. K. Brennaman, T. J. Meyer, Inorganic Chemistry 44 (2005) 6802.
[38] I. L. Duarte, M. Wang, R. H. Baker, M. Ince, M. V. Martinez-Diaz, M. K. Nazeeruddin, T. Torres, M. Gratzel, Angew. Chem. 124 (2012) 1931.
[39] M. Gratzel, J Photochem Photobiol A Chem. 164 (2004) 3.
[40] M. Gratzel, Inorganic Chemistry 44 (2005) 6841.
[41] S. M. Zakeeruddin, M. Gratzel, 19 (2009) 2187.
[42] B. O'regan, M, Gratzel, Nature 353 (1991) 737.
[43] M. Gorlov, L. Kloo, Dalton Trans. 2655 (2008) 2655.
[44] G.D. Chryssikos , L. Liu, C.P. Varsamis, E.I. Kamitsos, J Non-Cryst Solids 235 (1998) 761.
[45] K. Fredin, J. Nissfolk, G. Boschloo, A. Hagfeldt, J Electroanal. Chem. 609 (2009) 55.
[46] M. R. Narayan, Renew. Sust. Energ. Rev. 16 (2012) 208.
[47] J. Liu, H. T. Yang, J. B. Zhang, X. W. Zhou, Y. Lin, Acta Phys.⁃Chim. Sin. 27 (2011) 408.
[48] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110 (2010) 6595.
[49] H. Nusbaumer, S. M. Zakeeruddin, J. E. Moser, M. Graitzel, Chem. Eur. J. 9 (2003) 3756.
[50] N. Papageorgiou, W. F. Maier, M. Gratzel, J. Electrochem. Soc. 144 (1997 ) 876.
[51] S. J. Cho, J. Ouyang, J. Phys. Chem. C 115 (2011) 8519.
[52] C. Y. Lina, J. Y. Lin, C. C. Wana, T. C. Wei, Electrochimica Acta. 56 (2011) 1941.
[53] C. M. Chen, C. H. Chena, T. C. Wei, Electrochimica Acta. 55 (2010) 1687.
[54] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E. Abe, J. Electroanal. Chem. 570 (2004) 257.
[55] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E. Abe, J. Electroanal. Chem. 570 (2004) 257.
[56] L. Dai, Acc. Chem. Res. 46 (2013) 31.
[57] M. I. Katsnelson, Mater. Today 10 (2007) 20.
[58] F. Malara, M. Manca, L. D. Marco, P. Pareo, Giuseppe Gigli, ACS Appl. Mater. Interfaces 3 (2011) 3625.
[59] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. H. Baker, P. Comte, P. Pechy, M. Gratzelz, J. Electrochem. Soc., 153 (2006) A2255
[60] J. Chen, K. Li, Y. Luo, X. Guo, D. Li, M. Deng, S. Huang, Q. Meng, Carbon 47 (2009) 2704.
[61] Q. W. Jiang, G. R. Li, F. Wang, X. P. Gao, Electrochem. Commun. 12 (2010) 924.
[62] J. Robertson, E. P. O’Reilly, Phys. Rev. B 35 (1987) 2946.
[63] P. Brown, K. Takechi, P. V. Kamat, J. Phys. Chem. C, 12 (2008) 4776.
[64] W. J. Lee, E. Ramasamy, D. Y. Lee, J. S. Song, ACS Appl. Mater. Interfaces 1 (2009) 1145.
[65] S. U. Leea, W. S. Choi, B. Hong, Sol. Energy Mater. Sol. Cells 94 (2010) 680.
[66] A. K. Geim, K. S. Novoselov, Nature Materials 6 (2007) 183.
[67] F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A. C. Ferrari, Mater Today 15 (2012) 564.
[68] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 457 (2008) 706.
[68] J. S. Lee, H. J. Ahn, J. C. Yoon, J. H. Jang, Phys. Chem. Chem. Phys. 14 (2012) 7938.
[69] L. Zhang, J. Liang, Y. Huang, Y. Ma, Y. Wang, Y. Chen, 47 Carbon (2009) 3365.
[70] K. Yu, Z. Wen, H. Pu, G. Lu, Z. Bo, H. Kim, Y. Qian, E. Andrew, S. Maoa, Junhong Chen, J. Mater. Chem. A 1 (2013) 188.
[71] X. Huang, X. Qi, F. Boey, H. Zhang, Progress in Polymer Science 41 (2012) 666.
[72] X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 7 (2011) 1876.
[73] Feng Gong, Zhuoqun Li, Hong Wang and Zhong-Sheng Wang, J. Mater. Chem. 22 (2012) 17321.
[74] G. Yue, J. Wu, Y. Xiao, J. Lin, M. Huang, Z. Lan, J. Phys. Chem. C 116 (2012) 18057.
[75] K. M. Lee, W. H. Chiu, H. Y. Wei, C. W. Hu, V. Suryanarayanan, W. F. Hsieh, K. C. Ho, Thin Solid Films 518 (2010) 1716.
[76] J. Xia, N. Masaki, M. L. Cantu, Y. Kim, K. Jiang, S. Yanagida, J. Am. Chem. Soc., 130 (2008) 1258.
[77] Q.Tang, H. Cai, S. Yuan, X. Wang, J. Mater. Chem. A, 1 (2013) 317.
[78] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110 (2010) 6595.
[79] F. Gong, H. Wang, X. Xu, G. Zhou, Z. S. Wang, J. Am. Chem. Soc. 134 (2012) 10953.
[80] M. Wang, A. M. Anghel, B. Marsan, N. C. Ha, N. Pootrakulchote, S. M. Zakeeruddin, M. Gratzel, J. AM. CHEM. SOC. 131 (2009) 15976.
[81] J. Y. Lin, J. H. Liao, S. W. Chou, Electrochim. Acta 56 (2011) 8818.
[82] J. Y. Lin, J. H. Liao, T. C. Wei, Electrochem. Solid-State Lett. 14 (2011) D41.
[83] S. Y. Chaea, Y. J. Hwang, J. h. Cho, O. S. Joo, Electrochim. Acta 114 (2013) 745.
[84] H. W. Chen, C. W. Kung, C. M. Tseng, T. C. Wei, N. Sakai, S. Morita, M. Ikegami, T. Miyasaka, K. C. Ho, J. Mater. Chem. A, 1 (2013) 13759.
[85] H. Sun, D. Qin, S. Huang, X. Guo, D. Li, Y. Luo, Q. Meng, Energy Environ. Sci., 4 (2011) 2630.
[86] X. Yang, L. Zhou, A. Feng, H. Tang, H. Zhang, Z. Ding, Y. Ma, M. Wu, S. Jin, J. Mater. Res. 29 (2014) 935.
[87] H. M. Chuang, C. T. Li, M. H. Yeh, C. P. Lee, R. Vittal, K. C. Ho, J. Mater. Chem. A 22 (2014) 5816.
[88] S. A. Patil, P. Y. Kalode, R. S. Mane, D. V. Shinde, A. Doyoung, C. Keumnam, M. M. Sung, S. B. Ambadec, S. H. Han, Dalton Trans. 43 (2014) 5256.
[89] B. Lei, G. R. Li, X. P. Gao, J. Mater. Chem. A 2 (2014) 3919.
[90] Y. Hu, Z. Zheng, H. Jia, Y. Tang, L. Zhang, J. Phys. Chem. C 112 (2008) 13037.
[91] M. Ragam, N. Sankar, K. Ramachandran, J. Nano Electron. Phys. 3 (2011) 823.
[92] X. L. Yu, J. G. Song, Y. S. Fu, Y. Xie, X. Song, J. Sun, X. W. Du, J. Phys. Chem. C 114 (2010) 2380.
[93] Y. Wang, S. Li, Y. Bai, Z. Chen, Q. Jiang, T. Li, W. Zhang, Electrochim. Acta 114 (2013) 30.
[94] J. Y. Lin, S. W. Chou, Electrochem. Commun. 37 (2013) 11.
[95] A. Banerjee, K. K. Upadhyay, S. Bhatnagar, M. Tathavadekar, U. Bansode, S. Agarkar, S. B. Ogale, RSC Adv. 4 (2014) 8289.
[96] M. Y. Yen, C. C. Teng, M. C. Hsiao, P. I Liu, W. P. Chuang, C. M. Ma, C. K. Hsieh, M. C. Tsai, C. H. Tsai, J. Mater. Chem. 21 (2011) 12880.
[97] W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Electrochem. Commun. 10 (2008) 1555.
[98] S. Das, P. Sudhagar, S. Nagarajan, E. Ito, S. Y. Lee, Y. S. Kang, W. Choi, Carbon 50 (2012) 4815.
[99] X. Duan, Z. Gao, J. Chang, D. Wu, P. Ma, J. He, F. Xu, S. Gao, K. Jiang, Electrochim. Acta 114 (2013) 173.
[100] Z. Li, F. Gong, G. Zhou, Z. S. Wang, J. Phys. Chem. C 117 (2013) 6561.
[101] S. Gilje, S. Han, M. Wang, K. L. Wang, R. B. Kaner, Nano Lett. 7 (2007) 3394.
Electrochem. Commun. 10 (2008) 1555.
[102] N. Asim, S. Ahmadi, M. A. Alghoul, F. Y. Hammadi, K. Saeedfar, K. Sopian, Int. J. Photoenergy 2014 (2014) 21.
[103] H. Sirringhaus, Adv. Mater. 17 (2005) 2411.
[104] X. Cai, Z. Lv, H. Wu, S. Hou, D. Zou, J. Mater. Chem. 22 (2012) 9639.
[105] F. C. Krebs, Sol. Energy Mater. Sol. Cells 93 (2009) 394.
[106] W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339.
[107] M. Birkholz, Thin Film Analysis by X-Ray Scattering, 2006.
[108] L. D. Barron, Molecular Light Scattering and Optical Activity, 2009.
[109] P. T. Kissinger, W. R. Heineman, J. Chem. Educ. 60 (1983) 702.
[110] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, J. Phys. Chem. B 110 (2006) 13872.
[111] E. Escalante, Underground Corrosion,1981.
[112] P. Huang, C. Xu, J. Lin, C. Wang, X. Wang, C. Zhang, X. Zhou, S. Guo, D. Cui, Theranostics 1 (2011) 240.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊