(44.192.112.123) 您好!臺灣時間:2021/03/04 04:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沈彥成
研究生(外文):Yan Cheng Shen
論文名稱:奈米混成鈀基/二氧化鈰/多壁奈米碳管電觸媒之合成與特性研究
論文名稱(外文):Synthesis and Characterization of Pd-based/CeO2/MWCNTs Nanohybrid Electrocatalysts
指導教授:邱郁菁
指導教授(外文):Yuh-Jing Chiou
口試委員:邱郁菁
口試委員(外文):Yuh-Jing Chiou
口試日期:2014-07-09
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:93
中文關鍵詞:燃料電池加氫去氯
外文關鍵詞:fuel cellgoldpalladiumhydrodechlorination
相關次數:
  • 被引用被引用:0
  • 點閱點閱:56
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為應用於直接甲酸燃料電池DFAFCs,以及用於氯酚的電催化加氫去氯反應HDC,本研究以含浸法、多元醇法、及光合成法,合成奈米混成鈀基/氧化鈰/多壁奈米碳管。為了避免直接甲酸燃料電池與加氫去氯反應中產生的一氧化碳造成觸媒毒化, 以及為了避免鈀金屬在甲酸中溶出流失,本研究因此導入了氧化鈰與金。
所合成的奈米混成觸媒以XRD、SEM、HRTEM及TGA確認其結構、表面形貌與組成。以甲酸的循環伏安法,以及氯酚的電催化加氫去氯反應-循環伏安法,搭配高校液相層析HPLC分析產物,量測其電催化特性。
反應結果顯示,Polyol-AuPd/MWCNTs觸媒為最佳的電催化觸媒,其在DFAFCs應用中穩定性佳;在氯酚的電催化加氫去氯反應中,Polyol-Pd/CeO2/MWCNTs可提供的電流密度113.3mA/mg Pd為第二佳,僅次於AuPd/MWCNTs,而反應轉化率可達28.61%最佳。
In order to apply for direct formic acid fuel cells and electrocatalytic hydrodechlorination of chlorophenols, this study is to synthesize nanohybrid Pd based/CeO2/MWCNTs by impregnation, polyol and photo synthesis method. In order to prevent the poison caused by CO in DFAFCs and HDC reaction, and to avoid Pd leaching into formic acid, ceria and Au will be induced.
The nanohybrid catalysts are characterized by XRD, SEM, HRTEM, and TGA. The electrocatalytic properties are measured by CV in formic acid, HDC-CV and product analyzed by HPLC.
Polyol-AuPd/MWCNTs catalyst is proved to be the best electrocatalyst for both DFAFCs and HDC. In HDC reaction, polyol-Pd/CeO2/MWCNTs catalyst has second maximum current density 113.3mA/mg Pd, next to AuPd/MWCNTs 275.3mA/mg Pd, and conversion of 28.61%.
CONTENTS

ENGLISH ABSTRECT I

CHINESE ABSTRACT II

CONTENTS III

LIST OF TABLES VI

LIST OF FIGURES VII

Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Nanoparticles 3
2.1.1 Properties of Nanoparticles 3
2.2 Carbon Nanotubes 5
2.2.1 Introduction of Carbon Nanotubes 5
2.3 Catalyst 11
2.3.1 Introduction of Palladium 11
2.3.2 Introduction of Au catalyst 12
2.3.3 Bimetallic Catalyst Particles 14
2.4 Synthesis Technology 16
2.4.1 Polyol Process 16
2.4.2 Introduction of Synchrotron Radiation Hard X-ray 18
2.5 Electrochemical Measurement 19
2.5.1 Catalyst Layer in Direct Formic Acid Fuel Cell (DFAFC) 19
2.5.2 Introduction of hydrodechlorination 26

Chapter 3 Experimental
28
3.1 Materials 28
3.1.1 Reagents and Raw Materials 28
3.1.2 Preparation of the Precursor Solutions 29
3.2 Sample Preparation 30
3.2.1 Purification of Multi-wall Carbon Nanotubes 30
3.2.2 Preparation of Nano Hybrid CeO2/MWCNTs 30
3.2.3 Preparation of Nano Hybrid Pd/MWCNTs 31
3.2.4 Preparation of Nano Hybrid Au-Pd/MWCNTs 31
3.2.5 Preparation of Nano Pd/CeO2/MWCNTs, and
Au-Pd/CeO2/MWCNTs 32
3.2.6 Preparation of Nano Hybrid (1) Pd/MWCNTs, (2) AuPd/MWCNTs, (3) Pd/CeO2/MWCNTs, (4) Au-Pd/CeO2/MWCNTs by NSRRC 1A Hard X-ray 33
3.3 Specimen Analysis 40
A. X-ray Diffraction (XRD) 40
B. Thermogravimetry analysis (TGA) 40
C. Field Emission Scanning Electron Microscopy (FESEM) 40
D. Transmission Electron Microscopy (TEM) 40
E. Cyclic Voltammetry (CV) 41
F. High Performance Liquid Chromatography (HPLC) 42
Chapter 4 Results and Discussion 43
4.1 XRD Patterns 43
4.2 Thermogravimetry analysis (TGA) 49
4.3 Morphology 53
(a) Field Emission Scanning Electron Microscopy (FESEM) 53
(b) Transmission Electron Microscopy (TEM) 65
4.4 Electrochemical Analysis 68
4.4.1 Cyclic Voltammetry (CV) 68
4.4.2 Amperometric I-t Curve 76
4.4.3 Hydrodechlorination (HDC) 79
4.4.4 High Performance Liquid Chromatography (HPLC) 85
Chapter 5 Conclusion 86
References 87














LIST OF TABLES
Table 2.1 Preparations of various metal nanoparticles by polyol process. 18
Table 2.2 Working theory and technologies of six types of fuel cells. 21
Table 2.3 Recent syntheses of Pd/C and Pd–M/C catalysts with impregnation methodologies. 25
Table 4.1 The JCPD data of MWCNTs, CeO2, Au and Pd. 43
Table 4.2 TGA of the residual quantity for polyol catalyst. 53
Table 4.3 TGA of the residual quantity for 1A catalyst. 53
Table 4.4 Maximum oxidation current verse voltage data for polyol series catalysts 74
Table 4.5 Maximum oxidation current and corresponding potential for 1A series catalysts 75
Table 4.6 I-t Curve data for polyol series catalysts 78
Table 4.7 I-t Curve data for 1A series catalysts 78
Table 4.8 Maximum oxidation current verse voltage data for polyol series catalysts 84
Table 4.9 HDC conversion for the polyol series catalysts 85







LIST OF FIGURES
Figure 2.1 The observation by TEM of multi-wall coaxial nanotubes with various inner and outer diameters, di and do, and numbers of cylindrical shells N reported by Iijima in 1991: (a) N = 5, do =67A; (b) N = 2, do =55A; and (c) N = 7, di =23A, do =65A. 6
Figure 2.2 (a) The chiral vector The chiral vector C h = na1 + ma2 is defined on the honeycomb lattice of carbon atoms by unit vectors 1 and 2 and the chiral angle θ with respect to the Zigzag axis. 8
Figure 2.2 (b) Vectors specified by the pairs of integers (n, m) for general carbon nanotubes, including zigzag, armchair, and chiral nanotubes. Below each pair of integers (n, m) is listed the number of distinct caps that can be joined continuously to the carbon nanotube denoted by (n, m).The encircled dots denote metallic nanotubes while the small dots are for semiconducting nanotubes. 9
Figure 2.3 Different structures of carbon nanotubes (a) arm chair (b) Zigzag (c) Chiral. 10
Figure 2.4 Working Principle of Direct Formic Acid Fuel Cell. 23
Figure 3.1 The flow chart for the purification process of MWCNTs. 34
Figure 3.2 The flow chart for the preparation of CeO2/MWCNTs 35
Figure 3.3 The flow chart for the preparation of Pd/MWCNTs. 36
Figure 3.4 The flow chart for the preparation of Au-Pd/MWCNTs. 37
Figure 3.5 The flow chart for the preparation of (1)Pd/CeO2/MWCNTs (2)Au-Pd/CeO2/MWCNTs. 38
Figure 3.6 Photo synthesis diagram by using 1A-Hard X-ray exposure at NSRRC.

39
Figure 3.7 The flow chart for the preparation of (1) Pd/MWCNTs, (2)AuPd/MWCNTs, (3) Pd/CeO2/MWCNTs, (4) Au-Pd/CeO2/MWCNTs by NSRRC 1A Hard X-ray
39
Figure 4.1 XRD patterns of AO-MWCNTs and cerium oxide modified MWCNTs. 44
Figure 4.2 XRD patterns of commercial Pd/Carbon of, polyol-Pd/MWCNTs, and polyol-Pd/CeO2/MWCNTs. 45
Figure 4.3 XRD patterns of polyol-AuPd/MWCNTs, and polyol- AuPd/CeO2/MWCNTs. 46
Figure 4.4 XRD patterns of commercial Pd/Carbon, 1A-Pd/MWCNTs and 1A- Pd/CeO2/MWCNTs. 47
Figure 4.5 XRD patterns of AuPd/MWCNTs, and AuPd/CeO2/MWCNTs by (1A) Hard X-ray.
48

Figure 4.6 TGA patterns of AO-MWCNTs, polyol-AuPd/MWCNTs and polyol-Pd/MWCNTs. 50
Figure 4.7 TGA patterns of AO-MWCNTs, CeO2/MWCNTs, polyol-AuPd/CeO2/MWCNTs and polyol-Pd/CeO2/MWCNTs. 51
Figure 4.8 TGA patterns of AO-MWCNTs, 1A-Pd/MWCNTs and 1A-AuPd/MWCNTs. 52
Figure 4.9 TGA patterns of AO-MWCNTs, CeO2/MWCNTs, 1A-AuPd/CeO2/MWCNTs and 1A-Pd/CeO2/MWCNTs. 52
Figure 4.10 FESEM images of CeO2/MWCNTs (a) x50000 (b) x100000. 55
Figure 4.11 FESEM images of Pd/MWCNTs (a) x50000 (b) x100000. 56
Figure 4.12 FESEM images of AuPd/MWCNTs (a) x50000 (b) x100000. 57

Figure 4.13 FESEM images of Pd/CeO2/MWCNTs (a) x50000 (b) x100000. 58
Figure 4.14 FESEM images of AuPd/CeO2/MWCNTs (a) x100000 (b) x200000. 59
Figure 4.15 FESEM images of Pd/MWCNTs by 1A method (a) x50000 (b) x200000. 61
Figure 4.16 FESEM images of AuPd/MWCNTs (a) x50000 (b) x200000. 62
Figure 4.17 FESEM images of Pd/CeO2/MWCNTs (a) x50000 (b) x200000. 63
Figure 4.18 FESEM images of AuPd/CeO2/MWCNTs (a) x50000 (b) x200000. 64
Figure 4.19 HRTEM images with EDS of AuPd/MWCNTs (a)-(d). 67
Figure 4.20 Cycle voltammetry curves of Pd/MWCNTs by polyol method in 3M HCOOH + 1M H2SO4 at a scan rate of 10mVs-1 for 20 cycles. 70
Figure 4.21 Cycle voltammetry curves of AuPd/MWCNTs by polyol method in 3M HCOOH + 1M H2SO4 at a scan rate of 10mVs-1 for 20 cycles. 70
Figure 4.22 Cycle voltammetry curves of Pd/CeO2/MWCNTs by polyol method in 3M HCOOH + 1M H2SO4 at a scan rate of 10mVs-1 for 20 cycles.
71
Figure 4.23 Cycle voltammetry curves of AuPd/CeO2/MWCNTs by polyol method in 3M HCOOH + 1M H2SO4 at a scan rate of 10mVs-1 for 20 cycles. 71
Figure 4.24 Cycle voltammetry curves of Pd/MWCNTs by 1A method in 3M HCOOH + 1M H2SO4 at a scan rate of 10mVs-1 for 20 cycles. 72
Figure 4.25 Cycle voltammetry curves of AuPd/MWCNTs by 1A method in 3M HCOOH + 1M H2SO4 at a scan rate of 10mVs-1 for 20 cycles. 72
Figure 4.26 Cycle voltammetry curves of Pd/CeO2/MWCNTs by 1A method in 3M HCOOH + 1M H2SO4 at a scan rate of 10mVs-1 for 20 cycles. 73

Figure 4.27
Cycle voltammetry curves of AuPd/CeO2/MWCNTs by 1A method in 3M HCOOH + 1M H2SO4 at a scan rate of 10mVs-1 for 20 cycles.
73
Figure 4.28 Chronoamperometry of FA oxidation on polyol catalyst in 3M HCOOH + 1M H2SO4 at 0.2V for 10000 second. 77
Figure 4.29 Chronoamperometry of FA oxidation on 1A catalyst in 3M HCOOH + 1M H2SO4 at 0.2V for 10000 second. 77
Figure 4.30 Hydrodechlorination of Pd/MWCNTs by polyol method in 3M HCOOH + 0ppm 4-CP at a scan rate of 10mVs-1 for 20 cycles. 81
Figure 4.31 Hydrodechlorination of Pd/MWCNTs by polyol method in 3M HCOOH + 20ppm 4-CP at a scan rate of 10mVs-1 for 20 cycles. 81
Figure 4.32 Hydrodechlorination of AuPd/MWCNTs by polyol method in 3M HCOOH + 20ppm 4-CP at a scan rate of 10mVs-1 for 20 cycles. 82
Figure 4.33 Hydrodechlorination of Pd/CeO2/MWCNTs by polyol method in 3M HCOOH + 20ppm 4-CP at a scan rate of 10mVs-1 for 20 cycles. 82
Figure 4.34 Hydrodechlorination of AuPd/CeO2/MWCNTs by polyol method in 3M HCOOH + 20ppm 4-CP at a scan rate of 10mVs-1 for 20 cycles. 83
REFERENCES
[1] G.Q. Chen, S. Guan, G.M. Zeng, X.D. Li, A.W. Chen, C. Shang, Y. Zhou, H.K. Li, J.M.
He, Applied Microbiology Biotechnology 97 (2013) 3149–3157.
[2] R. Andreozzi, I.D. Somma, R. Marotta, G. Pinto, A. Pollio, D. Spasiano, Water Research 45 (2011) 2038–2048.
[3] C.H. Lin, S.K. Tseng, Chemosphere 39 (1999) 2375–2389.
[4] Seignez, C.; Vuillenium, A.; Adler, N.; Peringer, P. A procedure for production of Adapted bacteria to degrade chlorinated aromatics. J. Hazard. Mater. 2001, 84, 265.
[5] Surya Prakash, G. K.; Jog, P. V.; Krishnan, H. S.; Olah, G. A. A Domino Approach (Hydrolysis/Dehydrohalogenation/Heck Coupling) for the Synthesis of Styrene Sulfonate Salts. J. Am. Chem. Soc. 2011, 133, 2140–2143.
[6] Alonso, F.; Beletskaya, I. P.; Yus, M. (2002) Metal-Mediated Reductive Hydrodehalogenation of Organic Halides. Chem. Rev., 102, 4009–4029.
[7] Jha, N., et al., Pt–Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell. International Journal of Hydrogen Energy, 2008. 33(1): p. 427-433
[8] Cristina Buzea, Ivan Pacheco, and Kevin Robbie (2007).
[9] S. Shukla, S. Seal. Sol- Gel- Derived Oxide and Sulfide Nanoparticles. Synthesis, Functionalization and Surface Treatment of Nanoparticles Edilted by M.-I. Baraton.
[10] R. Birringer, Materials Science and Engineering, Vol. A117, (1989)33-43.
[11] Basri, S., et al., Nanocatalyst for direct methanol fuel cell (DMFC). International Journal of Hydrogen Energy, 2010. 35(15): p. 7957-7970.
[12] Wang, X.; Li, Q.; Xie, J.; Jin, Z.; Wang, J.; Li, Y.; Jiang, K.; Fan, S. (2009)3137-3141.
[13] Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58.
[14] Rice, C., et al., Catalysts for direct formic acid fuel cells. Journal of Power Sources, 2003. 115(2): p. 229-235.
[15] Tsuji, Jiro (2004). Palladium reagents and catalysts: new perspectives for the 21st century. John Wiley and Sons. p. 90. ISBN 0-470-85032-9.
[16] Masatake Haruta, Yamada N, Kobayashi T, Sano H, Catalysis Letters 405(1987).
[17] D.T. Thompson, Chemistry in Britain, 37 (2001) 43–44.
[18] D.T. Thompson, C.W. Corti and R.J. Holliday, ATT Congress, Paris, July 2002, Paper 2002-01- 2148.
[19] C. W. Corti, R. J. Holliday and D. T. Thompson, Potential of Catalysis by Gold for Fuel Cell and Pollution Control Applications, World Gold Council, 45 Pall Mall, London, SW1Y 5JG, UK.
[20] Zhou, B.; Hermans, S.; Somorjai, G. A.; Nanotechnology in Catalysis; Kluwer Academic/Plenum Publishers, New York, 2004.
[21] Sinfelt, J. H. Bimetallic CatalystssDiscoVeries, Concepts, and Applications; John Wiley & Sons: New York, 1983.
[22] Sinfelt, J. H.; Supported bimetallic cluster catalysts, J. Catal. 1973, 29, 308.
[23] Sinfelt, J. H.; Structure of bimetallic cluster, Acc. Chem. Res. 1989, 20, 134.
[24] Hwang, B.-J.;Sarma, L. S.; Chen, J.-M.; Chen, C.-H.; Shih, S.-C.; Wang, G.-R.; Liu, D.-G.; Lee, J.-F.; Tang, M.-T.; Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy. J. Am. Chem. Soc. 2005, 127, 11140.
[25] Meitzner, G.; Via, G.H.; Lytle, F. W.; Sinfelt, J. H.; An examination of a rhodium/magnesium oxide catalyst using X-ray absorption spectroscopy, J. Chem. Phys. 1983, 78, 882.
[26] Meitzner, G.; Via, G. H.; Lytle, F. W.; Sinfelt, J. H.; Structure of bimetallic clusters, Extended X-ray absorption fine structure (EXAFS) studies of Ir-Rh cluster, J. Chem. Phys. 1983, 78, 2533.
[27] Meitzner, G.; Via, G. H.; Lytle, F. W.; Sinfelt, J. H.; XANES analysis of catalytic systems under reaction conditions, J. Chem. Phys. 1985, 83, 4793.
[28] Sinfelt, J. H.; Via, G. H.; Lytle, F. W.; Structure of bimetallic clusters, Extended X-ray absorption fine structure (EXAFS) studies of Ru-Cu cluster, J. Chem. Phys. 1980, 72, 4832.
[29] Sinfelt, J. H.; Via, G. H.; Lytle, F. W.; Structure of bimetallic clusters, Extended X-ray absorption fine structure (EXAFS) studies of Os-Cu cluster, J. Chem. Phys. 1981, 75, 5527.
[30]Sinfelt, J. H.; Via, G. H.; Lytle, F. W.; Structure of bimetallic clusters, Extended X-ray absorption fine structure (EXAFS) studies of Pt-Ir cluster, J. Chem. Phys. 1982, 76, 2779.
[31] Roucoux, Alain; Schulz, Jurgen, Patin, Henri (2002). "Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts". Chemical Reviews 102 (10): 3757–3778. doi:10.1021/cr010350j. PMID 12371901.
[32] Buil, Maria L.; Esteruelas, Miguel A., Niembro, Sandra, Olivan, Montserrat, Orzechowski, Lars, Pelayo, Cristina, Vallribera, Adelina (2010). "Dehalogenation and Hydrogenation of Aromatic Compounds Catalyzed by Nanoparticles Generated from Rhodium Bis(imino)pyridine Complexes". Organometallics 29 (19): 4375–4383.
[33] M. Figlarz, F. Fievet and J.P. Lagier, French patent no. 8221483: Europe no. 0113281: USA no. 4539041: Finland no. 74416, Japan: application no. 24303783.
[34] L.K. Kurihara, G.M. Chow and P.E. Schoen, Nanostructured materials, vol 5, No 6, (1995) 607.
[35] F. Bonet, V. Delmas, S. Grugeons, R. H. Urbina, P. Y. Silvert, and K. Tekaia-Elhsissen, Nanostructured Mater., 11, (1999) 1277.
[36]Baik, S., Kim, H. S., Jeong, M. H., Lee, C. S., Je, J. H., Hwu, Y. and Margaritondo, G., Review of Scientific Instruments, 75 (2004) 4355.
[37] Margaritondo, G., Hwu, Y. and Je, J. H., Rivista del Nuovo cimento, 427 (2004) 1.
[38] Ferdi, K., Gulay, E., Eda, O. and Sefik, S., Langmuir, 21 (2005) 437.
[39]Wang, C. H., Hua, T. E., Chien, C. C., Yu, Y. L., Yang, T. Y., Liu, C. J., Leng, W. H., Hwu, Y., Yang, Y. C., Kim, C. C., Je, J. H., Chen, C. H., Lin, H. M. and Margaritondo, G., Materials Chemistry and Physics, 106 (2007) 323.
[40] Wang, C. H., Chien, C. C., Yu, Y. L., Liu, C. J., Lee, C. F., Chen, C. H., Hwu, Y., Yang, C. S., Je, J. H. and Margaritondo, G., Journal of Synchrotron Radiation, 14 (2007) 477.
[41]L. Carrette, K. A. Friedrich, and U. Stimming, "Fuel Cells – Fundamentals and Applications," Fuel Cells, vol. 1, p 5, 2001.
[42]S. Ha, B. Adams, R.I. Masel, J. Power Sources 128 (2004) 119–124.
[43]Y.W. Rhee, S. Ha, C. Rice, R.I. Masel, J. Power Sources 117 (2003) 35–38.
[44]A.V. Tripkovi′c, K.Dj. Popovi′c, R.M. Stevanovi′c, R. Socha, A. Kowal, Electrochem. Commun. 8 (2006) 1492–1498.
[45]L.L. Zhang, T.H. Lu, J.C. Bao, Y.W. Tang, C. Li, Electrochem. Commun. 8 (2006) 1625–1627.
[46]X.G. Li, I.M. Hsing, Electrochim. Acta 51 (2006) 3477–3483.
[47]Y.Y. Mu, H.P. Liang, J.S. Hu, L. Jiang, L.J. Wan, J. Phys. Chem. B 109 (2005) 22212–22216.
[48]G. Wu, Y.S. Chen, B.Q. Xu, Electrochem. Commun. 7 (2005) 1237– 1243.
[49]http://en.fcc.gov.ir/Formicacidfuelcell.aspx.
[50]http://www.tekion.com.
[51]Schmidt, T. J.; Behm, R. J.; Grgur, B. N.; Markovic, N. M.; Ross, P. N. Langmuir 2000, 16, 8159.
[52]Levia, E.; Iwasita, T.; Herrero, E.; Feliu, J. M. Langmuir 1997, 13, 6287.
[53]Kang, S.; Lee, J.; Lee, J. K.; Chung, S. Y.; Tak, Y. J. Phys. Chem. B 2006, 110, 7270.
[54]Lovic′, J. D.; Tripkovic′, A. V.; Gojkovic′, S. Lj.; Popovic′, K. Dj.; Tripkovic′, D. V.; Olszewski, P.; Kowal, A. J. Electroanal. Chem. 2005, 581, 294.
[55]Rice, C.; Ha, S.; Masel, R. I.; Waszczuk, P. J. Power Sources 2002, 111, 83.
[56]Rice, C.; Ha, S.; Masel, R. I.; Wieckowski, A. J. Power Sources 2003, 115, 229.
[57]Rhee, Y.; Ha, S.; Masel, R. I. J. Power Sources 2003, 117, 23.
[58]Ha, S.; Rice, C.; Masel, R. I.; Wieckowski, A. J. Power Sources 2003, 112, 655.
[59]Bath, B. D.; White, H. S.; Scott, E. R. Anal. Chem. 2000, 72, 433.
[60]Rhee, Y.-W.; Ha, S. Y.; Masel, R. I. J. Power Sources 2003, 117, 35.
[61]Wang, X.; Hu, J.-M.; Hsing, I.-M. J. Electroanal. Chem. 2004, 562, 73.
[62]Liu, L.; Pu, C.; Viswanathan, R.; Fan, Q.; Liu, R.; Smotkin, E. S. Electrochim. Acta 1998, 43, 3657.
[63]Zhou, W. P.; Lewera, A.; Larsen, R.; Masel, R. I.; Bagus, P. S.; Wieckowski, A. J. Phys. Chem. B 2006, 110, 13393.
[64]Zhang, L.; Lu, T.; Bao, J.; Tang, Y.; Li, C. Electrochem. Commun. 2006, 8, 1625.
[65]S. Ha, R. Larsen, R.I. Masel, J. Power Sources, 144, (2005) 28.
[66]R. Larsen, S. Ha, J. Zakzeski, R.I. Masel, J. Power Sources, 157, (2006) 78.
[67]Z.L. Liu, L. Hong, M.P. Tham, T.H. Lim, H.X. Jiang, J. Power Sources, 161, (2006) 831.

[68]L.L. Zhang, T.H. Lu, J.C. Bao, Y.W. Tang, C. Li, Electrochem. Commun., 8, (2006) 1625.
[69]X.G. Li, I.M. Hsing, Electrochim. Acta, 51, (2006) 3477.
[70]L. L. Zhang, Y.W. Tang, J.C. Bao, T.H. Lu, C. Li, J. Power Sources, 162, (2006) 177.
[71] L.N. Zanaveskin, V.A. Averganov, Y.A. Treger, Russ. Chem. Rev. 65 (1996) 17.
[72] K. Mackenzie, H. Frenzel, F.D. Kopinke, J. Appl. Catal. B Environ. 63 (2006) 161.
[73] Aramendia, M. A.; Borau, V.; Garcia, I. M.; Jimenez, C.; Lafont, F.; Marinas, A.; Marinas, J. M.; Urbano, F. J. Influence of the Reaction Conditions and Catalytic Properties on the Liquid-Phase Hydrodechlorination of Chlorobenzene over Palladium-Supported Catalysts: Activity and Deactivation. J. Catal. 1999, 187, 392.
[74] Janiak, T. Kinetics of o-Chlorotoluene Hydrogenolysis in the Presence of 3%, 5% and 10% Pd/C Catalysts. Appl. Catal., A 2008, 335, 7.
[75] Yuan, G.; Keane, M. A. Liquid Phase Hydrodechlorination of Chlorophenols over Pd/C and Pd/Al2O3: A Consideration of HC1/Catalyst Interactions and Solution pH Effects. Appl. Catal., B 2004, 52, 301.
[76] Calvo, L.; Gilarranz, M. A.; Casas, J. A.; Mohedano, A. F.; Rodriguez, J. J. Hydrodechlorination of 4-Chlorophenol in Aqueous Phase Using Pd/AC Catalysts Prepared with Modified Active Carbon Supports. Appl. Catal., B 2006, 67, 68.
[77] Karpinski, Z.; Early, K.; d’Itri, J. L. Catalytic Hydrodechlorination of 1,1-Dichlorotetrafluoroethane by Pd/Al2O3. J. Catal. 1996, 164, 378.
[78] Juszczyk, W.; Malinowski, A.; Karpinski, Z. Hydrodechlorination of CCl2F2 (CFC-12) over Gamma-Alumina Supported Palladium Catalysts. Appl. Catal., A 1998, 166, 311.

[79] Grittini, C.; Malcomson, M.; Farnando, Q.; Korte, N. Rapid Dechlorination of Polychlorinated Biphenyls on the Surface of Pd/Fe Bimetallic System. EnViron. Sci. Technol. 1995, 29, 2898.
[80] Rodriguez, J. G.; Lafuente, A. Effective Elimination of PCBs Catalyzed by the Palladium/Hydrazine System as an Ecological Sustainable Process. Ind. Eng. Chem. Res. 2008, 47, 7993.
[81] Ukisu, Y.; Miyadera, T. Dechlorination of Dioxins with Supported Palladium Catalysts in 2-Propanol Solution. Appl. Catal., A 2004, 271, 165.
[82] Zhang, F.; Chen, J.; Zhang, H.; Ni, Y.; Zhang, Q.; Liang, X. Dechlorination of Dioxins with Pd/C in Ethanol-Water Solution under Mild Conditions. Sep. Purif. Technol. 2008, 59, 164.
[83] Mallouk, T. E.; Schrick, B.; Blough, J. L. Hydrodechlorination of Trichloroethylene to Hydrocarbons Using Bimetallic Nickel-Iron Nanoparticles. Chem. Mater. 2002, 14, 5140.
[84] Zhang, W.; Quan, X.; Wang, J. Rapid and Complete Dechlorination of PCP in Aqueous Solution Using Ni/Fe Nanoparticles under Assistance of Ultrasound. Chemosphere 2006, 65, 58.
電子全文 電子全文(網際網路公開日期:20250101)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔