|
REFERENCES [1] G.Q. Chen, S. Guan, G.M. Zeng, X.D. Li, A.W. Chen, C. Shang, Y. Zhou, H.K. Li, J.M. He, Applied Microbiology Biotechnology 97 (2013) 3149–3157. [2] R. Andreozzi, I.D. Somma, R. Marotta, G. Pinto, A. Pollio, D. Spasiano, Water Research 45 (2011) 2038–2048. [3] C.H. Lin, S.K. Tseng, Chemosphere 39 (1999) 2375–2389. [4] Seignez, C.; Vuillenium, A.; Adler, N.; Peringer, P. A procedure for production of Adapted bacteria to degrade chlorinated aromatics. J. Hazard. Mater. 2001, 84, 265. [5] Surya Prakash, G. K.; Jog, P. V.; Krishnan, H. S.; Olah, G. A. A Domino Approach (Hydrolysis/Dehydrohalogenation/Heck Coupling) for the Synthesis of Styrene Sulfonate Salts. J. Am. Chem. Soc. 2011, 133, 2140–2143. [6] Alonso, F.; Beletskaya, I. P.; Yus, M. (2002) Metal-Mediated Reductive Hydrodehalogenation of Organic Halides. Chem. Rev., 102, 4009–4029. [7] Jha, N., et al., Pt–Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell. International Journal of Hydrogen Energy, 2008. 33(1): p. 427-433 [8] Cristina Buzea, Ivan Pacheco, and Kevin Robbie (2007). [9] S. Shukla, S. Seal. Sol- Gel- Derived Oxide and Sulfide Nanoparticles. Synthesis, Functionalization and Surface Treatment of Nanoparticles Edilted by M.-I. Baraton. [10] R. Birringer, Materials Science and Engineering, Vol. A117, (1989)33-43. [11] Basri, S., et al., Nanocatalyst for direct methanol fuel cell (DMFC). International Journal of Hydrogen Energy, 2010. 35(15): p. 7957-7970. [12] Wang, X.; Li, Q.; Xie, J.; Jin, Z.; Wang, J.; Li, Y.; Jiang, K.; Fan, S. (2009)3137-3141. [13] Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58. [14] Rice, C., et al., Catalysts for direct formic acid fuel cells. Journal of Power Sources, 2003. 115(2): p. 229-235. [15] Tsuji, Jiro (2004). Palladium reagents and catalysts: new perspectives for the 21st century. John Wiley and Sons. p. 90. ISBN 0-470-85032-9. [16] Masatake Haruta, Yamada N, Kobayashi T, Sano H, Catalysis Letters 405(1987). [17] D.T. Thompson, Chemistry in Britain, 37 (2001) 43–44. [18] D.T. Thompson, C.W. Corti and R.J. Holliday, ATT Congress, Paris, July 2002, Paper 2002-01- 2148. [19] C. W. Corti, R. J. Holliday and D. T. Thompson, Potential of Catalysis by Gold for Fuel Cell and Pollution Control Applications, World Gold Council, 45 Pall Mall, London, SW1Y 5JG, UK. [20] Zhou, B.; Hermans, S.; Somorjai, G. A.; Nanotechnology in Catalysis; Kluwer Academic/Plenum Publishers, New York, 2004. [21] Sinfelt, J. H. Bimetallic CatalystssDiscoVeries, Concepts, and Applications; John Wiley & Sons: New York, 1983. [22] Sinfelt, J. H.; Supported bimetallic cluster catalysts, J. Catal. 1973, 29, 308. [23] Sinfelt, J. H.; Structure of bimetallic cluster, Acc. Chem. Res. 1989, 20, 134. [24] Hwang, B.-J.;Sarma, L. S.; Chen, J.-M.; Chen, C.-H.; Shih, S.-C.; Wang, G.-R.; Liu, D.-G.; Lee, J.-F.; Tang, M.-T.; Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy. J. Am. Chem. Soc. 2005, 127, 11140. [25] Meitzner, G.; Via, G.H.; Lytle, F. W.; Sinfelt, J. H.; An examination of a rhodium/magnesium oxide catalyst using X-ray absorption spectroscopy, J. Chem. Phys. 1983, 78, 882. [26] Meitzner, G.; Via, G. H.; Lytle, F. W.; Sinfelt, J. H.; Structure of bimetallic clusters, Extended X-ray absorption fine structure (EXAFS) studies of Ir-Rh cluster, J. Chem. Phys. 1983, 78, 2533. [27] Meitzner, G.; Via, G. H.; Lytle, F. W.; Sinfelt, J. H.; XANES analysis of catalytic systems under reaction conditions, J. Chem. Phys. 1985, 83, 4793. [28] Sinfelt, J. H.; Via, G. H.; Lytle, F. W.; Structure of bimetallic clusters, Extended X-ray absorption fine structure (EXAFS) studies of Ru-Cu cluster, J. Chem. Phys. 1980, 72, 4832. [29] Sinfelt, J. H.; Via, G. H.; Lytle, F. W.; Structure of bimetallic clusters, Extended X-ray absorption fine structure (EXAFS) studies of Os-Cu cluster, J. Chem. Phys. 1981, 75, 5527. [30]Sinfelt, J. H.; Via, G. H.; Lytle, F. W.; Structure of bimetallic clusters, Extended X-ray absorption fine structure (EXAFS) studies of Pt-Ir cluster, J. Chem. Phys. 1982, 76, 2779. [31] Roucoux, Alain; Schulz, Jurgen, Patin, Henri (2002). "Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts". Chemical Reviews 102 (10): 3757–3778. doi:10.1021/cr010350j. PMID 12371901. [32] Buil, Maria L.; Esteruelas, Miguel A., Niembro, Sandra, Olivan, Montserrat, Orzechowski, Lars, Pelayo, Cristina, Vallribera, Adelina (2010). "Dehalogenation and Hydrogenation of Aromatic Compounds Catalyzed by Nanoparticles Generated from Rhodium Bis(imino)pyridine Complexes". Organometallics 29 (19): 4375–4383. [33] M. Figlarz, F. Fievet and J.P. Lagier, French patent no. 8221483: Europe no. 0113281: USA no. 4539041: Finland no. 74416, Japan: application no. 24303783. [34] L.K. Kurihara, G.M. Chow and P.E. Schoen, Nanostructured materials, vol 5, No 6, (1995) 607. [35] F. Bonet, V. Delmas, S. Grugeons, R. H. Urbina, P. Y. Silvert, and K. Tekaia-Elhsissen, Nanostructured Mater., 11, (1999) 1277. [36]Baik, S., Kim, H. S., Jeong, M. H., Lee, C. S., Je, J. H., Hwu, Y. and Margaritondo, G., Review of Scientific Instruments, 75 (2004) 4355. [37] Margaritondo, G., Hwu, Y. and Je, J. H., Rivista del Nuovo cimento, 427 (2004) 1. [38] Ferdi, K., Gulay, E., Eda, O. and Sefik, S., Langmuir, 21 (2005) 437. [39]Wang, C. H., Hua, T. E., Chien, C. C., Yu, Y. L., Yang, T. Y., Liu, C. J., Leng, W. H., Hwu, Y., Yang, Y. C., Kim, C. C., Je, J. H., Chen, C. H., Lin, H. M. and Margaritondo, G., Materials Chemistry and Physics, 106 (2007) 323. [40] Wang, C. H., Chien, C. C., Yu, Y. L., Liu, C. J., Lee, C. F., Chen, C. H., Hwu, Y., Yang, C. S., Je, J. H. and Margaritondo, G., Journal of Synchrotron Radiation, 14 (2007) 477. [41]L. Carrette, K. A. Friedrich, and U. Stimming, "Fuel Cells – Fundamentals and Applications," Fuel Cells, vol. 1, p 5, 2001. [42]S. Ha, B. Adams, R.I. Masel, J. Power Sources 128 (2004) 119–124. [43]Y.W. Rhee, S. Ha, C. Rice, R.I. Masel, J. Power Sources 117 (2003) 35–38. [44]A.V. Tripkovi′c, K.Dj. Popovi′c, R.M. Stevanovi′c, R. Socha, A. Kowal, Electrochem. Commun. 8 (2006) 1492–1498. [45]L.L. Zhang, T.H. Lu, J.C. Bao, Y.W. Tang, C. Li, Electrochem. Commun. 8 (2006) 1625–1627. [46]X.G. Li, I.M. Hsing, Electrochim. Acta 51 (2006) 3477–3483. [47]Y.Y. Mu, H.P. Liang, J.S. Hu, L. Jiang, L.J. Wan, J. Phys. Chem. B 109 (2005) 22212–22216. [48]G. Wu, Y.S. Chen, B.Q. Xu, Electrochem. Commun. 7 (2005) 1237– 1243. [49]http://en.fcc.gov.ir/Formicacidfuelcell.aspx. [50]http://www.tekion.com. [51]Schmidt, T. J.; Behm, R. J.; Grgur, B. N.; Markovic, N. M.; Ross, P. N. Langmuir 2000, 16, 8159. [52]Levia, E.; Iwasita, T.; Herrero, E.; Feliu, J. M. Langmuir 1997, 13, 6287. [53]Kang, S.; Lee, J.; Lee, J. K.; Chung, S. Y.; Tak, Y. J. Phys. Chem. B 2006, 110, 7270. [54]Lovic′, J. D.; Tripkovic′, A. V.; Gojkovic′, S. Lj.; Popovic′, K. Dj.; Tripkovic′, D. V.; Olszewski, P.; Kowal, A. J. Electroanal. Chem. 2005, 581, 294. [55]Rice, C.; Ha, S.; Masel, R. I.; Waszczuk, P. J. Power Sources 2002, 111, 83. [56]Rice, C.; Ha, S.; Masel, R. I.; Wieckowski, A. J. Power Sources 2003, 115, 229. [57]Rhee, Y.; Ha, S.; Masel, R. I. J. Power Sources 2003, 117, 23. [58]Ha, S.; Rice, C.; Masel, R. I.; Wieckowski, A. J. Power Sources 2003, 112, 655. [59]Bath, B. D.; White, H. S.; Scott, E. R. Anal. Chem. 2000, 72, 433. [60]Rhee, Y.-W.; Ha, S. Y.; Masel, R. I. J. Power Sources 2003, 117, 35. [61]Wang, X.; Hu, J.-M.; Hsing, I.-M. J. Electroanal. Chem. 2004, 562, 73. [62]Liu, L.; Pu, C.; Viswanathan, R.; Fan, Q.; Liu, R.; Smotkin, E. S. Electrochim. Acta 1998, 43, 3657. [63]Zhou, W. P.; Lewera, A.; Larsen, R.; Masel, R. I.; Bagus, P. S.; Wieckowski, A. J. Phys. Chem. B 2006, 110, 13393. [64]Zhang, L.; Lu, T.; Bao, J.; Tang, Y.; Li, C. Electrochem. Commun. 2006, 8, 1625. [65]S. Ha, R. Larsen, R.I. Masel, J. Power Sources, 144, (2005) 28. [66]R. Larsen, S. Ha, J. Zakzeski, R.I. Masel, J. Power Sources, 157, (2006) 78. [67]Z.L. Liu, L. Hong, M.P. Tham, T.H. Lim, H.X. Jiang, J. Power Sources, 161, (2006) 831.
[68]L.L. Zhang, T.H. Lu, J.C. Bao, Y.W. Tang, C. Li, Electrochem. Commun., 8, (2006) 1625. [69]X.G. Li, I.M. Hsing, Electrochim. Acta, 51, (2006) 3477. [70]L. L. Zhang, Y.W. Tang, J.C. Bao, T.H. Lu, C. Li, J. Power Sources, 162, (2006) 177. [71] L.N. Zanaveskin, V.A. Averganov, Y.A. Treger, Russ. Chem. Rev. 65 (1996) 17. [72] K. Mackenzie, H. Frenzel, F.D. Kopinke, J. Appl. Catal. B Environ. 63 (2006) 161. [73] Aramendia, M. A.; Borau, V.; Garcia, I. M.; Jimenez, C.; Lafont, F.; Marinas, A.; Marinas, J. M.; Urbano, F. J. Influence of the Reaction Conditions and Catalytic Properties on the Liquid-Phase Hydrodechlorination of Chlorobenzene over Palladium-Supported Catalysts: Activity and Deactivation. J. Catal. 1999, 187, 392. [74] Janiak, T. Kinetics of o-Chlorotoluene Hydrogenolysis in the Presence of 3%, 5% and 10% Pd/C Catalysts. Appl. Catal., A 2008, 335, 7. [75] Yuan, G.; Keane, M. A. Liquid Phase Hydrodechlorination of Chlorophenols over Pd/C and Pd/Al2O3: A Consideration of HC1/Catalyst Interactions and Solution pH Effects. Appl. Catal., B 2004, 52, 301. [76] Calvo, L.; Gilarranz, M. A.; Casas, J. A.; Mohedano, A. F.; Rodriguez, J. J. Hydrodechlorination of 4-Chlorophenol in Aqueous Phase Using Pd/AC Catalysts Prepared with Modified Active Carbon Supports. Appl. Catal., B 2006, 67, 68. [77] Karpinski, Z.; Early, K.; d’Itri, J. L. Catalytic Hydrodechlorination of 1,1-Dichlorotetrafluoroethane by Pd/Al2O3. J. Catal. 1996, 164, 378. [78] Juszczyk, W.; Malinowski, A.; Karpinski, Z. Hydrodechlorination of CCl2F2 (CFC-12) over Gamma-Alumina Supported Palladium Catalysts. Appl. Catal., A 1998, 166, 311.
[79] Grittini, C.; Malcomson, M.; Farnando, Q.; Korte, N. Rapid Dechlorination of Polychlorinated Biphenyls on the Surface of Pd/Fe Bimetallic System. EnViron. Sci. Technol. 1995, 29, 2898. [80] Rodriguez, J. G.; Lafuente, A. Effective Elimination of PCBs Catalyzed by the Palladium/Hydrazine System as an Ecological Sustainable Process. Ind. Eng. Chem. Res. 2008, 47, 7993. [81] Ukisu, Y.; Miyadera, T. Dechlorination of Dioxins with Supported Palladium Catalysts in 2-Propanol Solution. Appl. Catal., A 2004, 271, 165. [82] Zhang, F.; Chen, J.; Zhang, H.; Ni, Y.; Zhang, Q.; Liang, X. Dechlorination of Dioxins with Pd/C in Ethanol-Water Solution under Mild Conditions. Sep. Purif. Technol. 2008, 59, 164. [83] Mallouk, T. E.; Schrick, B.; Blough, J. L. Hydrodechlorination of Trichloroethylene to Hydrocarbons Using Bimetallic Nickel-Iron Nanoparticles. Chem. Mater. 2002, 14, 5140. [84] Zhang, W.; Quan, X.; Wang, J. Rapid and Complete Dechlorination of PCP in Aqueous Solution Using Ni/Fe Nanoparticles under Assistance of Ultrasound. Chemosphere 2006, 65, 58.
|