(3.239.33.139) 您好!臺灣時間:2021/03/05 18:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉宗翰
研究生(外文):Zong-Han Liu
論文名稱:含石墨烯或氧化石墨烯及其衍生物之熱敏性複合凝膠材料之製備及性質研究
論文名稱(外文):Studies on Preparation and Properties of Novel Thermosensitive Nanocomposite Hydrogels
指導教授:李文福李文福引用關係
指導教授(外文):Wen-Fu Lee
口試委員:李文福
口試委員(外文):Wen-Fu Lee
口試日期:2014-02-14
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:152
中文關鍵詞:NIPAAm氧化石墨稀Tween 80複合水凝膠還原氧化石墨烯石墨稀rGO/ZnO複合材料
外文關鍵詞:graphene oxidereduced graphene oxideNIPAAmnanocomposite hydrogeltween 80rGO/ZnOgraphene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
PART 1
本研究主要係先 將石墨氧化及脫層成氧化石墨烯或石墨烯。氧化石墨烯係利用Hummer法,以濃硫酸及KMnO4與石墨上的雙鍵產生氧化反應,使石墨帶有羧基、羥基及環氧基,該基團與水分子因氫鍵吸引而剝離成氧化石墨烯;而石墨烯係利用界面活性劑(TWEEN 80)的疏水端附著於石墨表面,再藉由超音波震盪使界面活性劑將石墨剝離成單層及數層之石墨烯,剝離的氧化石墨烯及石墨烯經由拉曼光譜分析確認之。再將分散於水相中的氧化石墨烯及石墨烯水溶液加入於NIPAAm及 NMBA交聯劑中聚合成網狀膠體,探討添加不同含量之石墨烯及氧化石墨烯於NIPAAm膠體內,對複合凝膠材料之膨潤度、藥物釋放及機械強度等物性之影響,並使用四點探針測量膠體的電性變化。結果顯示氧化石墨烯因為表面的氧化官能基使膠體在低含量下膨潤度及機械強度都有明顯的提升,並影響膠體對特定藥物的吸收及釋放表現,但相對氧化官能基破壞了原本石墨烯π鍵結的導電結構影響膠體導電性;石墨烯由於沒有氧化官能基所以在低含量下膨潤度及機械強度表現不如氧化石墨烯,但膠體的吸收及釋放表現不受特定藥物的影響及完整的π鍵結導電結構大幅提高膠體的導電性。
PART 2
本研究主要係先將石墨利用Hummer法氧化成氧化石墨烯,並採用聲化學及微波輔助法成功合成還原氧化石墨烯/氧化鋅(rGO/ZnO)納米複合材料,合成後的複合材料經由拉曼光譜、掃描式電子顯微鏡(SEM)及能量分散光譜儀(EDS)分析確認之。再將rGO/ZnO 納米複合材料加入於NIPAAm及 NMBA交聯劑中聚合成網狀膠體,探討rGO/ZnO納米複合材料導入膠體後對於凝膠材料之膨潤度、藥物釋放、機械強度等物性之影響,並使用四點探針測量膠體的電性變化。結果顯示附著在rGO/ZnO材料上的氧化鋅使片層表面帶有正電荷及還原後的還原氧化石墨烯大幅提高材料的導電性,除了提高膠體膨潤度及提升膨潤後複合凝膠的導電度外,導入帶有正電荷的rGO/ZnO複合材料間接影響凝膠在不同電荷藥物下的藥物釋放。提高rGO/ZnO表面氧化鋅附著量雖然擴大片層間的層間距離使複合凝膠的膨潤度提升,卻降地了抑制電子-電洞再結合的能力及破壞了π鍵結的導電結構,影響rGO/ZnO的導電性及離子溶液的離子化能力,使得膠體在蒸餾水及不同pH值水溶液膨潤下的導電性表現較差。
PART 1
In this study, the graphite was exfoliated by oxidation or surfactant/water solutions into graphene oxide (GO) or graphene (GR), then using them to prepare nanocomposite hydrogels. GO was prepared by the Hummer method. The natural graphite powder as raw materials reacts with strong oxidizer (KMnO4、sulfuric and sodium nitrate) to let the graphite surface generate some functional groups, such as carboxyl、hydroxyl and epoxy group. The group containing oxygen that make graphite oxide be hydrophilic and to exfoliate to single or a few layers of GO. GR can be produced by surfactant (TWEEN 80) that hydrophobicity chains are attached on the surface of graphite and exfoliated by sonication. GR and GO was recognized by Raman spectroscopy. Then, the second step was to polymerize NIPAAm and crosslinking agent (NMBA) in the graphene or graphene oxide aqueous solution to form the nanocomposite hydrogel. The effects of GO or GR content on the swelling behaviors, mechanical properties, drug release and conductivity of the nanocomposite hydrogels were evaluated. The results show that the nanocomposite hydrogels has significantly improved swelling behaviors and mechanical properties with lower content of GO. The nanocomposite hydrogels also affect the performance of loading and release drug. However, the functional oxygenated groups on GO sheets considerable destruction of graphene electronic structure, resulting in weakened the conductivity of nanocomposite hydrogels. Owing to the GR without the oxygenated groups, relatively lower content of GR could affect the performance of swelling behaviors and mechanical properties were lower than GO. However, complete electronic structure of graphene not only can substantially increase the conductivity of the nanocomposite hydrogels, but also not affected by the drugs with different charges.
PART 2
In this study, rGO/ZnO has been prepared as a conductive material for the nanocomposites hydrogel by sonochemcial process and microwave-assisted method. The structural, morphological and composition of the rGO/ZnO were characterized by XRD, Raman and SEM-EDS respectively. The last step was to polymerize NIPAAm and crosslinking agent (NMBA) in the rGO/ZnO or graphene oxide aqueous solution to form the nanocomposite hydrogel. The behaviors, such as swelling behaviors, mechanical properties, drug release and conductivity, of this nanocomposite hydrogel were investigated. These results indicated the swelling behaviors and conductivity of the nanocomposite hydrogels has significantly improved with increasing content of rGO/ZnO. The performance of loading and release drug of the nanocomposite hydrogels with rGO/ZnO would also be affected due to rGO/ZnO with the positive charge. Although we can improve swelling behaviors by increased deposition of ZnO on the rGO surfaces, it would decrease inhibition of the recombination of electron–hole pairs and destruction of graphene electronic structure, which may lead to decrease the ability of conductivity and photoionization in solution of the nanocomposite hydrogel.
CONTENTS
ACKNOWLEDGMENT I
ABSTRACT II
CONTENTS VII
LIST OF TABLES X
LIST OF FIGURES XII
PART 1
STUDIES ON PREPARATION AND PROPERTIES
OF NOVEL THERMOSENSITIVE HYDROGELS
CONTAINING GRAPHENE AND GRAPHENE OXIDE

CHAPTER 1 INTRODCTION 1
CHAPTER 2 EXPERIMENTAL 4
2.1 Material 4
2.2 Experimental Procedure 5
CHAPTER 3 RESULTS AND DISCUSSION 17
3.1 Structure and morphology of GR and GO 17
3.2 Structure and morphology of GR and GO Composite Hydrogels 22
3.3 Effect of GO or GR Content on Swelling Ratio Behaviors 24
3.4 Effects of GO or GR Content on Mechanical Properties 27
3.5 Effect of GO or GR on the Electrical Resistivity of the Swollen Hydrogel 31
3.6 Effect of GO or GR on the Drug Release Behavior of the Composite Hydrogel 33
3.7 Effect of GO or GR Content on Swelling Ratio under Different pHs 43
3.8 Effect of GO or GR Content on Electrical Resistivity under Different pHs 45
CHAPTER 4 CONCLUSIONS 48
REFERENCES 52
PART 2
STUDIES ON PREPARATION AND PROPERTIES
OF NOVEL THERMOSENSITIVE HYDROGELS
CONTAINING REDUCED GRAPHENE OXIDE/ZINC OXIDE

CHAPTER 1 INTRODCTION 55
CHAPTER 2 EXPERIMENTAL 59
2.1 Material 59
2.2 Experimental Procedure 60
CHAPTER 3 RESULTS AND DISCUSSION 71
3.1 Quantitative analysis of rGO/ZnO 71
3.2 Morphology of rGO/ZnO 73
3.3 Structure of rGO/ZnO 78
3.4 Effect of rGO/ZnO on the Zeta Potential and Electrical Resistivity 82
3.5 Effect of rGO/ZnO Content on Swelling Ratio Behaviors 85
3.6 Effects of rGO/ZnO Content on Mechanical Properties 90
3.7 Effect of rGO/ZnO on the Electrical Resistivity of the Swollen Hydrogel 96
3.8 Effect of rGO/ZnO on the Drug Release Behavior of the Composite Hydrogel 100
3.10 Effect of rGO/ZnO Content on Electrical Resistivity under Different pHs 116
CHAPTER 4 CONCLUSIONS 120
EXPERIMENTAL 124
[1].S. Hoffman, J. Control. Release, 6, 297 (1987).
[2].Y.H. Bae, T. Okano and S.W. Kim, J. Polym. Sci., Polym. Phys.,28, 923 (1990)
[3].E. Hirokawa and T. Tanaka, J. Chem. Phys., 81, 6379 (1984).
[4].J. Ricka and T. Tanaka, Macromolecules, 17, 2916 (1984).
[5].S.R. Eisenberg and A.J. Grodzinski, J. Membr. Sci., 19, 173 (1984).
[6].J. Hofkens, J. Hotta, K. Sasaki, H. Masuhara, J. Am. Chem. Soc, 119, 2741, 114, (1997).
[7].R. A. Marcus and N. Sutin, Biophys Acta, 811, 265,(1985)
[8].S. J. Yeh, C. Y. Tsai,C. Y. Huang, G. S. Liou and S. H. Cheng, Electrochem. Commum, 5, 373, (2003).
[9].J.Lu, P. Shen, B. Zhao, B. Yao, Z. Xie, E. Liu and S. Tan, European Polymer Journal, 44, 2348, (2008)
[10].Y. J. Pu, T. Kurata, M. Soma, J. Kido and H. Nishide, Synthetic Metals, 143, 207, (2004).
[11].I.C. Kwon, Y.H. Bae, T. Okano and S. W. Kim, J. Control. Release, 17, 149 (1991)
[12].Y, Okuyama, R. Yoshida, K. Sakai, T. Okano and Y. Sakurai, Polym. J. , Biomater. Sci. Polym. Ed., 4, 545 (1993).
[13].Messersmith, P. B.; Znidarsich, F., MRSSymposium Proceedings 457; Materials Research Society: Pittsburgh, PA, 507 (1997).
[14].Liang L., Jun L., and Xiaoyi G., Langmuir, 16, 9895 (2000)
[15].Lee. Wen-Fu, Fu, Yao-Tsung, J Appl Polym Sci 2003, 89, 3652.
[16].D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39 (2010) 228–240.
[17].Paredes JI, Villar-Rodil S, Solı’s-Ferna’ndez P, Martı’nez-Alonso A, Tasco’n JMD., Langmuir 2009;25(10):5957–68.
[18].W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339.
[19].Yiwan Huang, Ming Zeng, Jie Ren, Jing Wang, Liren Fan, Qingyu Xu, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 401, (2012) 97-106.
[20].H. Bai, C. Li, X. Wang, G. Shi, Chem. Commun. 46 (2010) 2376–2378.
[21].Jianfeng Shen, Bo Yan, Tie Li, Yu Long, Na Li and Mingxin Ye, Mechanical, Soft Matter, 2012,8, 1831-1836
[22].A.K. Geim, K.S. Novoselov, Nature Materials, 6 (2007), pp. 183–191
[23].K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666–669.
[24].A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8 (2008) 902–907.
[25].C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321 (2008) 385–388.
[26].L. Guardia, M.J. Fernandez-Merino, J.I. Paredes, P. Solis-Fernandez, S. Villar-Rodil, A. Martinez-Alonso, J.M.D. Tascon, Carbon,49 (2011) 1653-1662
[27].Y. Jin, M. Jia, M. Zhang, Q. Wen, Applied Surface Science,264 (2013)787-793
[28].Sajini Vadukumpully, Jinu Paul, Suresh Valiyaveettil, Carbon, 47(2009)3288-3294
[29].Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De et al., Nat Nanotechnol, 3 (9) (2008) 563–568
[30].Andrea C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, Solid State Communications, 143(2007) 47-57
[31].Kajbafvala, A., Shayegh, M.R., Mazloumi, M., Zanganeh, S., Mohajerani, M.S., Sadrnezhaad, S.K., Journal of Alloys and 26 Compounds”, Journal of Alloys and Compounds 469 (2009) 293-297.
[32].C. W. Bunn,”Proc. Phys. Soc., 47 [5] (1935) 835-842
[33].G.A. Parks, Chemical Reviews, 65 (1965), pp. 177–198
[34].Fatehah Mohd Omar, Hamidi Abdul Aziz, Serge Stoll, Science of The Total Environment,468–469(2014)195-201
[35].Afshin Pendashteh, Mir Fazlollah Mousavi, Mohammad Safi Rahmanifar, Electrochimica Acta,88(2013) 347-357
[36].Hem Raj Pant, Bishweshwar Pant, Han Joo Kim, Altangerel Amarjargal, Chan Hee Park, Leonard D. Tijing, Eun Kyo Kim, Cheol Sang Kim, Ceramics International,39 (2013) 5083-5091
[37].Jian-Jun Shi, Wei Hu, Dan Zhao, Ting-Ting He, Jun-Jie Zhu, Sensors and Actuators B: Chemical,173 (2012)239-243
[38].G.D. Sharma, M.L. Keshtov, A.R. Khokhlov, D. Tasis, C. Galiotis, Organic Electronics,15 (2014)348-355
[39].Guadalupe del C. Pizarro, Oscar G. Marambio, C.M. Gonzalez Henriquez, M. Sarabia Vallejos, Kurt E. Geckeler, European Polymer Journal, 49 (2013) 3483-3491
[40].Ananthakumar Ramadoss, Sang Jae Kim, Materials Chemistry and Physics,140 (2013)405-411
[41].Yu Liu, Yong Hu, Mojiao Zhou, Haisheng Qian, Xiao Hu, Applied Catalysis B: Environmental,125(2012) 425-431
[42].Shuying Dong, Yukun Li, Jingyu Sun, Chongfei Yu, Yihui Li, Jianhui Sun, Materials Chemistry and Physics, 145(2014)357-365
[43].Tongguang Xu, Liwu Zhang, Hanyun Cheng, Yongfa Zhu, Applied Catalysis B: Environmental, 101(2011)382-387
[44].M. Ahmad, E. Ahmed, Z.L. Hong, J.F. Xu, N.R. Khalid, A. Elhissi, W. Ahmed, Applied Surface Science, 274 (2013)273-281
[45].Xiaoyang Pan, Min-Quan Yangab and Yi-Jun Xu, Phys. Chem. Chem. Phys., 16(2014) 5589-5599
[46].Yiwan Huang, Ming Zeng, Jie Ren, Jing Wang, Liren Fan, Qingyu Xu, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 401, (2012) 97-106.
[47].H. Bai, C. Li, X. Wang, G. Shi, Chem. Commun. 46 (2010) 2376–2378.
[48].Jianfeng Shen, Bo Yan, Tie Li, Yu Long, Na Li and Mingxin Ye, Mechanical, Soft Matter, 2012,8, 1831-1836
[49].A. Souissi, C. Sartel, A. Sayari, A. Meftah, A. Lusson, P. Galtier, V. Sallet, M. Oueslati, Solid State Communications, 152 (2012) 794-797
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔