(3.238.186.43) 您好!臺灣時間:2021/03/01 09:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王偉彥
研究生(外文):Wei-Yan Wang
論文名稱:染料敏化太陽能電池低成本可撓曲對電極之研究
論文名稱(外文):A STUDY OF DSSCS BASED ON TCO-PT-FREE FLEXIBLE COUNTER ELECTRODES
指導教授:林正裕林正裕引用關係
指導教授(外文):Jeng-Yu Lin
口試委員:林正裕
口試委員(外文):Jeng-Yu Lin
口試日期:2014-06-27
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
論文頁數:108
中文關鍵詞:染料敏化太陽能電池
外文關鍵詞:PEDOTDSSC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究中,吾人先利用高溫回流方式,將奈米碳管(carbon nanotube; CNT)與聚丙烯樹脂(polypropylene; PP)相充分混合,再使用熱壓成型方法,製被出奈米碳管與聚丙烯樹脂複合薄膜(CNT/PP),用來作為染料敏化太陽能電池(dye-sensitized solar cell; DSSC)對電極(counter electrode; CE),以同時取代於導電玻璃上導電氧化層(transparent conducting oxide)及鉑(Pt)電催化材料,並針對其進行各式材料檢定及電化學特性測量。然而以CNT/PP作為對電極,其電催化活性比起常用的鉑對電極來的差,而導致所組之DSSC具較差的光電轉換效率。但基於此CNT/PP電極於片電阻及可撓曲測試上,皆有十分優異的特性,故吾人仍將此CNT/PP作為撓式底材,來取代一般導電玻璃基材。但為了進一步提升CNT/PP電極的電催化活性,吾人以電化學聚合方式,將二氧乙烯噻吩(poly(3,4-ethylenedioxythiophene); PEDOT)聚合沉積於CNT/PP薄膜上,以製備出PEDOT-CNT/PP複合式電極。從一連串探討結果中可得知,PEDOT-CNT/PP所構成之複合材料,皆表現出優異的電催化活性及低電荷轉移阻抗,另一方面在經最適化的可撓曲測試下,發現CNT佔CNT/PP整體含量為43%時有最佳的撓曲特色,雖然在此條件,其搭配所組之DSSC光電轉換效率只達6.09%,比起鉑對電極的6.69%稍微遜色,但在撓曲特性上可以看出PEDOT-CNT/PP複合材料具備相當的潛力應用作為低成本、具可撓性染料敏化太陽能電池之對電極材料。
In this study, we first utilize the high temperature reflux mode to well mix the CNT and PP and followed by thermal compression to prepare the CNT/PP thin plates as a Pt-free and TCO-free CE for DSSCs. After that, to further carry out the test of materials characterizations and electrochemical activity. Although the cell efficiency of DSSCs using CNT/PP based CEs was still much lower than that of DSSC with Pt/FTO CE, it is showed the excellent sheet resistance and flexibleness. Therefore, we used the CNT/PP to replace the FTO glass as a substrate. In order to enhance the photovoltaic performance, we further deposited PEDOT thin film on flexible CNT/PP plates via electropolymerization method as a PEDOT-CNT/PP CE. From a series of results and discussion, the composites of PEDOT-CNT/PP exhibited excellent electrocatalytic activity and low charge transfer resistance. On the other hand, after the optimization of flexible test, the CNT/PP plate prepared in the ratio of CNT/PP with 43% possessed the highest bending ability. However, the power conversion efficiency of the PEDOT coated on CNT/PP with 43% is 6.09%, which is lower than Pt/FTO CE (6.69%). In the bending characteristics, the composites of PEDOT-CNT/PP showed the excellent potential as a low-cost and flexible composites CE in DSSCs.
AbstractI
摘要II
Table of contentsIII
List of FigureVII
List of TableXII
Chapter 1 Introduction1
Chapter 2 Literature Reviews3
2.1 Working principle of DSSCs3
2.1.1 Working mechanism of DSSCs3
2.1.2 Power conversion of DSSCs5
2.2 Compositions of DSSCs6
2.2.1 Substrates6
2.2.2 Photo electrode8
2.2.3 Dye10
2.2.4 Electrolyte12
2.2.5 Counter electrode14
2.2.5.a Active materials on FTO substrate as counter
electrode14
2.2.5.a-1 Platinum materials14
2.2.5.a-2 Carbon materials18
2.2.5.a-3 Conducting polymer materials.20
2.2.5.a-4 Composites of carbon and conducting polymer materials26
2.2.5.b Active materials on TCO-free substrate as counter
electrode29
2.2.5.b-5 Carbon materials29
2.2.5.c Active materials on a flexible TCO-free substrate as counter
electrode31
2.2.5.c-6 Carbon materials31
2.2.5.c-7 Conducting polymer materials33
2.3 Motivation of this study35
Chapter 3 Experimental36
3.1 Experimental Preparation36
3.1.1 Materials36
3.1.2 Preparation of nanocomposite CNT/PP composite CE38
3.1.3 Surface modification by Oxygen plasma38
3.1.4 Preparation of PEDOT-CNT/PP nanocomposite40
3.1.5 Fabrication of DSSCs42
3.2 Characterization and Measurements44
3.2.1 Field-Emmision Scanning Electron Microscopy44
3.2.2 Fourier Transform Infrared Spectroscopy44
3.2.3 Cyclic Voltammetry44
3.2.4 Electrochemical Impedance Spectroscopy44
3.2.5 Photocurrent Density-Voltage Performance45
3.3 Principle of the Instruments46
3.3.1 Fourier transform infrared spectroscopy46
3.3.2 Electrochemical Impedance Spectroscopy48
Chapter 4 Results and discussion50
4.1 Surface modification of monolithic plates50
4.1.1 Effect of oxygen plasma on surface morphology of the
CNT/PP monolithic plates50
4.1.2 Composition analysis of the CNT/PP monolithic plates53
4.1.3 Effect of CNT content on physical properties of CNT/PP
monolithic plates55
4.1.4 Electrochemical characteristics of CNT/PP monolithic
plates57
4.1.5 Cell performance of DSSCs based on CNT/PP plates63
4.2 PEDOT coated CNT/PP plates65
4.2.1 Materials characterizations of PEDOT-CNT/PP CEs65
4.2.2 Electrochemical characteristics of PEDOT-CNT/PP
CEs68
4.2.3 Cell performance of DSSCs based on PEDOT-CNT/PP
CEs82
Chapter 5 Conclusions84
References86
[1]B. O’ Regan and M. Gratzel, Nature, 353 (1991) 737.
[2]A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Gratzel, Science, 334 (2011) 629.
[3]T. Kawashima, H. Matsui and N. Tanabe, Thin Solid Films, 445 (2003) 241
[4]Y. M. Xiao, J. Wu, G. Yue, G. Xie, J. Lin and Mi. Huang, Electrochim. Acta, 55 (2010) 4573.
[5]S. Ito, N. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin and M. Gratzel, Chem. Commun., 4005 (2006) 4004.
[6]F. Huang, D. Chen, X. L. Zhang, R. A. Caruso and Y. B. Cheng, Adv. Funct. Mater, 20 (2010) 2301.
[7]T. C. Monson, M. A. Rodriguez, J. L. Leger, T. E. Stevens and D. L. Huber, J. Mater. Res., 28 (2013) 348.
[8]D. V. Bavykin, L. Passoni and F. C. Walsh, Chem. Commun., 49 (2013) 7007.
[9]X. Cai, H. Wu, S. Hou, M. Peng X. Yu and D. Zou, Chem. Sus. Chem., 7 (2014) 474.
[10]Y. D. Park, K. Anabuki, S. Kim, K. W. Park, D. H. Lee, S. H. Um, J. Kim and J. H. Cho, Macromol. Res., 21 (2013) 636.
[11]S. Hore, C. Vetter, R. Kern, H. Smit and A. Hinsch, Sol. Energy Mater. Sol. Cells, 90 (2006) 1176.
[12]D.S. Tsoukleris, I. M. Arabatzis, E. Chatzivasiloglou, A. I. Kontos, V. Belessi, M. C. Bernard and P. Falaras, Sol. Energy, 79 (2005) 422.
[13]M. Gratzel, Nature, 414 (2001) 338.
[14]M. K. Nazeeruddin, R. H. Baker, P. Liska and M Gratzel, J. Phys. Chem. B, 107 (2003) 8981.
[15]G. Boschloo, L. Haggman and A. Hagfeldt, J. Phys. Chem. B, 110 (2006) 13144.
[16]C. H. Chang and Y. L. Lee, Appl. Phys. Lett., 91 (2007) 053503.
[17]J. Jiang and A. Kucernak, Electrochim. Acta, 47 (2002) 2381.
[18]W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, J. Phys. Chem. B, 107 (2003) 4374.
[19]B. Li, L. Wang, B. Kang, P. Wang and Y. Qiu, Sol. Energy Mater. Sol. Cells, 90 (2006) 549.
[20]H. Han, W. Liu, J. Zhang and X. Z. Zhao, Adv. Funct. Mater., 15 (2005) 1940.
[21]C. H. Law, R. Spence and B. C. O’ Regan, J. Mater. Chem. A, 1 (2013) 14154.
[22]Y. L. Lee, C. L. Chen, L. W. Chong, C. H. Chen, Y. F. Liu and C. F. Chi, Electrochem. Commun., 12 (2010) 1662.
[23]N. Papageorgiou, W. F. Maier and M. Gratzel, J. Electrochem. Soc., 144 (1997) 876.
[24]N. Papageorgiou, Coord. Chem. Rev., 248 (2004) 1421.
[25]C. H. Yoon, R. Vittal, J. Lee, W. S. Chae and K. J. Kim, Electrochim. Acta, 53 (2008) 2890.
[26]X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida and E. Abe, J. Electroanal. Chem., 570 (2004) 257.
[27]G. U. Wang and Y. Lin, Curr. Appl. Phys., 9 (2009) 1005.
[28]T. N. Murakami, S. Ito, Q. Wang M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. H. Baker, P. Comte, P. Pechy and M. Gratzel, J. Electrochem. Soc., 153 (2006) A2255.
[29]X. Fang, M. Li ,K. Guo, X. Liu, Y. Zhu, B. Sebo and X. Zhao, Sol. Energy, 101 (2014) 176.
[30]H. J. Choi, J. E. Shin, G. W. Lee, N. G. Park, K. Kim and S. C. Hong, Curr. Appl. Phys., 10 (2010) S165.
[31]W. J. Lee, E. Ramasamy, D. Y. Lee and J. S. Song, ACS, 6 (2009) 1145.
[32]J. Y. Lin, W. Y. Wang and Y. T. Lin, Surf. And Coat. Techn., 231 (2013) 171.
[33]Y. Xiao, J. Y. Lin, W. Y. Wang, S. Y. Tai, G. Yue and J. Wu, Electrochim. Acta, 90 (2013) 468.
[34]J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin and S. Hao, J. Power Sources, 181 (2008) 172.
[35]K. M. Lee, P. Y. Chen, C. Y. Hsu, J. H. Huang, W. H. Ho, H. C. Chen and K. C. Ho, J. Power Sources, 188 (2009) 313.
[36]M. Gao, Y. Xu, Y. Bai and S. Jin, Appl. Surf. Sci., 289 (2014) 145.
[37]Y. M. Xiao, J. Y. Lin, J. H. Wu, S. Y. Tai and G. T. Yue, Electrochim. Acta, 83 (2012) 221.
[38]J. Zhang, X. Li, W. Guo, T. Hreid, J. Hou, H. Su and Z. Yuan, Electrochim. Acta, 56 (2011) 3147.
[39]Y. Xiao, J. Y. Lin, S. Y. Tai, S. W. Chou, G. Yue and J. Wu, J. Mater. Chem., 22 (2012) 19919.
[40]J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thambi, P. Wang, S. M. Zakeeruddin, M. Gratzel, A. Hinsch, S. Hore, U. Wurfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien and G. E. Tulloch, Prog. Photovlot: Res. Appl., 15 (2007) 1
[41]G. Veerappan, K. Bojan and S. W. Rhee, ACS Appl. Mater. Interfaces, 3 (2011) 857.
[42]J. Chen, K. Li, Y. Luo, X. Guo, D. Li and M. Deng, Carbon, 47 (2009) 2704.
[43]H. Sun, Y. Luo, Y. Zhang, D. Li, Z. Yu, K. Li and Q. Meng, J. Phys. Chem., 114 (2010) 11673.
[44]H. Zhang, Y. Han, X. Liu, P. Liu, H. Yu and S. Zhang, Chem. Commun., 46 (2010) 8395.
[45]P. R. Griffiths, OCTOBER, 222 (1983) 297.
[46]Y. M. Xiao, J. Y. Lin, S. Y. Tai, S. W. Chou, G. Yue and J. Wu, J. Mater. Chem., 22 (2012) 19919.
[47]T. Saleh, S. Agarwal and V. Gupta, Appl. Catal. B, 106 (2011) 45.
[48]J. Kathi and K. Y. Rhee, J. Mater. Sci., 43 (2008) 33.
[49]V. Sciarratta, U. Vohrer, D. Hegemann, M. Muller and C. Oehr, Surf. Coat. Technol., 174 (2003) 805.
[50]R. Morent, N. D. Geyter, C. Leys, L. Gengembre and E. Payen, Surf. Interface Anal., 40 (2008) 597.
[51]M. Gratzel, Inorg. Chem., 44 (2005) 6841.
[52]C. Kvarnstrom, H. Neugebauer, S. Blomquist, H. J. Ahonen, J. Kankare, A. Ivaska and N. S. Sariciftci, Synth. Met., 101 (1999) 66.
[53]C. Kvarnstrom, H. Neugebauer, A. Ivaska and N. S. Sariciftci, J. Mol. Struct., 521 (2000) 271.
[54]M. J. O’Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman and R. E. Smalley, Chem. Phys. Lett., 342 (2001) 265.
[55]A. Star, J. F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E. W. Wong, X. Yang, S.-W. Chung, H. Choi and J. R. Heath, Angew. Chem., Int. Ed., 40 (2001) 1721.
[56]T. H. Lee, K. Do, Y. W. Lee, S. S. Jeon, C. Kim, J. Ko and S. S. Im, J. Mater. Chem., 22 (2012) 21624.
[57]Y. Saito, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, J. Photochem. Photobiol., A, 164 (2004) 153.
[58]J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin and S. Hao, J. Power Sources, 181 (2008) 172.
[59]L. Y. Han, N. Koide, Y. Chiba, A. Islam, R. Komiya, N. Fuke, A. Fukui and R. Yamanaka, Appl. Phys. Lett., 86 (2005) 213501.
[60]N. Koide, A. Islam, Y. Chiba and L. Y. Han, J. Photochem. Photobiol., A, 182 (2006) 296.
[61]M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Gratzel and T. Ma, J. Am. Chem. Soc., 134 (2012) 3419.
[62]M. Wu, X. Lin, A. Hagfeldt and T. Ma, Angew. Chem. Int. Ed., 50 (2011) 3520.
[63]J. Zhang, X. Li, W. Guo, T. Hreid, J. Hou, H. Sua and Z. Yuan, Electrochim. Acta, 56 (2011) 3147.
[64]H. Niu, S. Qin, X. Mao, S. Zhang, R. Wang, L. Wan, J. Xu and S. Miao, Electrochim. Acta, 121 (2014) 285.
[65]Y. Saito, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, J. Photochem. Photobiol., A, 164 (2004) 153.
[66]S. Biallozor and A. Kupniewska, Electrochem. Commun., 2 (2000) 480.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔