( 您好!臺灣時間:2023/05/29 00:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Decomposition of Organic Pollutants in Wastewater by H2O2/UV
指導教授(外文):Jia-Ming Chern
口試委員(外文):Jia-Ming Chern
外文關鍵詞:UVhydrogen peroxideBenzoic acidAdvanced Oxidation Processpseudo first order kinetics
  • 被引用被引用:4
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
實驗分析結果顯示,對於苯甲酸及對甲基苯甲酸兩種化合物,在不同過氧化氫添加量下,皆顯以1~4倍添加量最好,其視反應動力常數kobs分別達到252min-1、517 min-1,並且比起對甲基苯甲酸,在同樣添加倍數下,苯甲酸更容易受到添加量不同的影響。結果顯示越高的有機物起始濃度其kobs越高,在300ppm時反應都趨近零階反應。在不同反應溫度實驗中,兩種化合物有不同的反應表現。35℃時苯甲酸有較差的降解速率,而對甲基苯甲酸則有最佳降解速率。在不同pH值的實驗中發現,無論是苯甲酸或對甲基苯甲酸,在pH值7時有最佳的降解效果。由系列實驗下可知在相同反應條件下,對甲基苯甲酸的降解效果皆比苯甲酸來的好。並且起始濃度在50ppm時,所有處理結果皆顯示2小時的降解移除率都可以達到八成以上。由全部系列條件的實驗下來得知所有實驗都可以以擬一階動力學得到很好的擬合,因此可以用擬一階動力學模式預測反應的情形。
Many organic compounds have been synthesized, manufactured and produced as the chemical industry booming. With the growing demand for polyester fiber, the raw material, terephthalic acid manufacturing process produced large quantity of wastewater containing organic pollutants. In this study, UV/hydrogen peroxide was applied to treat the two main organic pollutants, benzoic acid and p-toluic acid in the terephthalic acid manufacturing process wastewater. The effects of treatment and the parameters of reaction kinetics were analyzed and discussed under varying reaction conditions.
The experimental results showed that initial hydrogen peroxide to the acid molar ratio ranging 1 to 4 gives the best treatment effect with the apparent kinetic constants (kobs) 252min-1 and 517 min-1 for benzoic acid and p-toluic acid, respectively. Furthermore, benzoic acid was more easily affected by the hydrogen peroxide dosage compared to p-toluic acid. The results also showed that the apparent kinetic constants decreased with increasing initial concentration of the organic acids. With lower initial acid concentrations, the reactions followed pseudo first order kinetics, but the reactions approached zeroth order when the initial concentration was as high as 300ppm. In the experiments, the reactions of the two compounds behaved differently at different reaction temperatures. For example, the degradation rates of benzoic acid was poor at 35 ℃, but was the highest for p-toluic acid at the same temperature. It was found that the solution pH of 7 was the optimal pH for benzoic acid or p-toluic acid degradation. From the series of experiments under the same reaction conditions, p-toluic acid was found to be easier to decompose than benzoic acid. All results showed that all the degradation rates after two hours were greater than 80% when the initial concentration was 50 ppm. All the experimental results showed that the experimental data were correlated well with a pseudo first-order kinetic model. Therefore, it was concluded that the pseudo first-order reaction kinetic model could be applied to predict the degradation conversions for given operating conditions.
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 8
第二章 文獻回顧 10
2.1 傳統廢水處理 10
2.2 高級氧化法 13
2.2.1 光催化氧化法(Photocatalytic Oxidation) 15
2.2.2 超聲波氧化法(Ultrasonic Oxidation) 15
2.2.3 Fenton氧化法(Fenton reaction) 16
2.2.4 紫外光/過氧化氫法(UV radiation/Hydrogen peroxide) 16
2.2.5 光分解反應 18
2.2.6 紫外光/過氧化氫程序反應及影響因素 20
2.2.7 反應動力學 26
第三章 實驗 31
3.1 實驗設備 31
3.2 實驗藥品 33
3.3 實驗架構 34
3.4 實驗步驟 34
3.4.1 初步測試 34
3.4.2 實驗設置 35
第四章 結果與討論 37
4.1 初步測試結果 37
4.2 苯甲酸降解實驗 39
4.2.1 過氧化氫添加量之影響 39
4.2.2 苯甲酸起始濃度之影響 44
4.2.3 反應系統溫度之影響 49
4.2.4 反應系統pH值之影響 54
4.3 對甲基苯甲酸降解實驗 58
4.3.1 過氧化氫添加量之影響 58
4.3.2 目標物起始濃度之影響 62
4.3.3 反應系統溫度之影響 68
4.3.4 反應系統pH值之影響 72
第五章 結論 78
第六章 參考文獻 79
Ahmed, B., Mohamed, H., Limem, E., Nasr B., (2009). Degradation and Mineralization of Organic Pollutants Contained in Actual Pulp and Paper Mill Wastewaters by a UV/H2O2 Process. Ind. Eng. Chem. Res., 48, 3370-3379.
Azbar,N., Yonar, T., Kestioglu, K. (2004). Comparison of Various Advanced Oxidation Processes and Chemical Treatment Methods for COD and Color Removal from a Polyester and Acetate Fiber Dyeing Effluent. Chemosphere, 55, 35-43.
Bach, A., Zelmanov, G., Semiat, R. (2009). Wastewater Mineralization Using Advanced Oxidation Process. DESALIN WATER TREAT, 6, 152-159.
Beck, G. (1969). Detection of Charged Intermediate of Pulse Radiolysis by Electrical Conductivity Measurements. Int. J. Radiat. Phys. Chem., 1, 361-371.
Behnajady, M. A., Modirshahla, N., Fathi, H. (2006). Kinetics of Decolorization of an Azo Dye in UV Alone and UV/H2O2 Processes. J. Hazard. Mater., 136, 816-821.
Beltran-Heredia, J., Torregrosa, J., Dominguez, J. R., Peres J. A. (2001). Kinetics of the Oxidation of p-Hydroxybenzoic Acid by the H2O2/UV System. Ind. Eng. Chem. Res., 40, 3104-3108.
Benitz, J., Beltran-Heredia, J., Acero, J. L., Gonzalez, T. (1994). Kinetic-Study of Propoxur Oxidation by UV-Radition and Combined O3 UV Radition. Water Res., 33, 1264-1270.
Benitz, J., Beltran-Heredia, J., Acero, J. L., Gonzalez, T. (1996). Degradation of Protocatechuic Acid by Two Advanced Oxidation Processes: Ozone/UV Radiation and H2O2/UV Radiation. Water Res., 30, 1597-1604
Bielski, H. J., Benon, H. J., Cabelli, D. E., Ravindra, L. A., Alberta, A. B. (1985). Reactivity of Perhydroxyl/Superoxide Radicals in Aqueous Solution. J. Phys. Chem., 14, 1041-100.
Buxton, G. V., Greenstock, C. L., Helman, W. P., Ross, A. B., (1988). Critical review of rate constants for reactions of hydrated Electrons, hydrogen atoms and hydroxyl radicals in aqueous solution. J. Phys. Chem., 17, 513-886.
Carey, J. H. (1992). An Introduction to AOP for Destruction of Organics in Wastewater. Water Pollut.Res. J. Can., 27, 1-21.
Chang, M. W., Chung, C. C., Chern, J. M., Chen, T. S. (2010). Dye Decomposition Kinetics by UV/H2O2: Initial Rate Analysis by Effective Kinetic Modelling Methodology. Chemical Engineering Science., 65, 135-140.
Fenton, H. J. (1884). Oxidative Properties of the H2O2/Fe2+ System and its Application. J. Chem. Soc., 65, 889–899.
Glaze, W. H., Kang, J. W., Chapin, D.H. (1987). The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide, and Ultraviolet Radiation. Ozone Sci. Eng., 9, 335-352.
Guittonneau, S., DeLaat, J., Dore, M., Duguet, J.P., Bonnel, C. (1988). Study of the Degradation of Some Volatile Organochlorinated Compounds by Hydrogen Peroxide Photolysis in Water. Rev. Sci., 1, 85–91
Haji, S., Benstaali, B., Al-Bastaki, N. (2011). Degradation of Methyl Orange by UV/H2O2 Advanced Oxidation Process. Chem. Eng. J., 168, 134-139.
Heponiemi, A., Lassi, U. (2012). Food Industrial Processes - Methods and Equipment, 313-338.
IJpelaar, G. F., Harmsen, D. J. H., Heringa, M. (2007),http://www.techneau.org/
Johnson, M. B., Mehrvar, M. (2008). Aqueous Metronidazole Degradation by UV/H2O2 Process in Single-and Multi-Lamp Tubular Photoreactors: Kinetics and Reactor Design. Ind. Eng. Chem. Res., 47, 6525-6537.
Kalsooma, U., Ashraf, S. S., Meetani, M. A., Rauf, M. A., Bhatti, H. N. (2011). Degradation and Kinetics of H2O2 Assisted Photochemical Oxidation of Remazol Turquoise Blue. Chem. Eng. J., 200-202, 373-379.
Katsoyiannis, I. A., Canonica, S., Von, G. U. (2011). Efficiency and Energy Requirements for the Transformation of Organic Micropollutants by Ozone, O3H2O2 and UVH2O2. Water Res., 45, 3811-3822.
Koppenol, W. H., (2001). The Haber-Weiss Cycle--70 Years Later. Redox Rep., 6, 655-660.
Leng, W. H., Liu, H., Cheng, S., Zhang, J., Cao, C. (2000). Kinetics of Photocatalytic Degradation of Aniline in Water Over TiO2 Supported on Porous Nickel. J. Photochem. Photobiol. A, 131, 125-132.
Lipczynska-Kochany, E. (1991). Novel Method for a Photocatalytic Degradation of 4-Nitrophenol in Homogeneous Solution. Environ. Sci. Technol., 12, 87-92.
Little, C., Hepher, M.J., El-Sharif, M. (2002). The Sono-Degradation of Phenanthrene in an Aqueous Environment. Ultrasonics, 40, 667–674.
Macarie, H., Noyola, A., Guyot, J. P. (1992). Anaerobic Treatment of a Petrochemical Wastewater from a Terephthalic Acid Plant. Water Sci. Technol., 25, 223-235.

Malaiyandi, M., Sadar, M. H., Lee, P., O’Grady, R. (1980). Removal of Organics in Water Using Hydrogen Peroxide in Presence of Ultraviolet Light. Water Res., 14, 1131-1135.
Malik, P.K., Sanyal, S.K. (2004). Kinetics of Decolourisation of Azo Dyes in Wastewater by UV/H2O2 Process. Sep. Purif. Technol., 36, 167-175.
Noltingk, B. E., Neppiras, E. A. (1950). Cavitation Produced by Ultrasonics. Proc. Phys. Soc., 63, 674.
Rivas, F. J., Beltran, F. J. Acedo, Benito. (2000). Chemical and Photochemical Degradation of Acenaphthylene,Intermediate Identification. J. Hazard. Mater., 75, 89-98.
Staehelln, J., Hoigne, J. (1982). Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide, Environ. Scl. Technol., 16, 676-681.
Taoda Hiroshi著(2003)光觸媒圖解。商周出版
Tseng, S.K., Yang, C.J. (1994). The Reaction Characteristics of Wastewater Containing Nitrophenol, Treated Using an Anaerobic Biological Fluidized Bed. Water Sci.Technol., 30, 233-240.
Weinstein, J., Benon, H. J., Bielski, H. J., (1979). Kinetics of the Interaction of HO2‧and O2-‧Radicals with Hydrogen Peroxide. The Haber-Weiss Reaction. J. Am. Chem. Soc., 101, 58-62.
Wu, C. L., Shemer, H., Linden, K. G. (2007). Photodegradation of Metolachlor Applying UV and UV/H2O2. J. Agric. Food Chem., 55, 4059-4065.
王振家 (2005)。對苯二甲酸 (PTA)製程廢水厭氧處理之研究。中興大學環境工程所碩士論文
黃學聰 (2007)。以fenton程序處理4硝基酚廢水。國立交通大學環境工程所碩士論文
鄭宇軒 (2013)。以臭氧為基礎的高級氧化法處理有機廢水。大同大學化學工程所碩士論文
第一頁 上一頁 下一頁 最後一頁 top