(3.239.159.107) 您好!臺灣時間:2021/03/08 20:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江子揚
研究生(外文):Tzu-yang Chiang
論文名稱:探討分子內氫鍵與氟取代基對旋光席夫鹼液晶相之影響
論文名稱(外文):Study on the Influences of the Intramolecular Hydrogen Bond and Fluoro Substituent on the Mesophase Behaviors of Schiff-based Liquid Crystals
指導教授:黃俊誠黃俊誠引用關係
指導教授(外文):Chiung-Cheng Huang
口試委員:黃俊誠
口試委員(外文):Chiung-Cheng Huang
口試日期:2014-07-28
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:135
中文關鍵詞:席夫鹼氟取代基液晶
外文關鍵詞:Fluoro SubstituentLiquid CrystalsSchiff-based
相關次數:
  • 被引用被引用:0
  • 點閱點閱:47
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇文章中,將氟側邊取代基導入席夫鹼(Schiff base)衍生物中合成出四系列新型旋光席夫鹼液晶材料,藉由改變分子內氫鍵及非旋光烷鏈端的結構,觀察其對液晶相的影響。所以本研究將長烷鏈、長烷鏈炔基及氟側邊取代基導入水楊醛亞胺(salicylaldimine)合成出四系列席夫鹼結構的液晶分子,藉由改變非旋光烷鏈長度,探討分子內氫鍵與氟側邊取代基對液晶相生成之影響。四個系列液晶化合物皆觀察出N*和SmA*液晶相的生成,第一系列的化合物中,非旋光烷鏈CTCmN (m=6-8),在降溫時呈現出Iso.-BPI -N*-SmA*-Cr.的液晶相順序。非旋光烷鏈CTCmNF (m=6-8),在降溫時呈現出Iso.-N*-SmA*-Cr.的液晶相順序。其中CTCmN (m= 8)有最廣的藍相範圍(2.6 °C)。第二及第三系列的化合物中,CTYmNF (m=6-8)、CTOCmNF (m=6-8)在降溫時皆呈現出Iso.-N*-SmA*-Cr.的液晶相順序。其中CTYmNF (m= 7)有最廣的N*相範圍(44.46 °C)。第四系列的化合物中,CTC8HN 在降溫時呈現出Iso. - BPIII - BPI - N*- SmA*- Cr.的液晶相順序。CTY8HN 在降溫時呈現出Iso. - BPI - N*- SmA*- Cr.的液晶相順序。CTY8HF、CTOC8HF在降溫時皆呈現出Iso.-N*-SmA*-Cr.的液晶相順序。CTC8HF 在降溫時呈現出Iso.-N*-TGBA*-SmA*-Cr.的液晶相順序。當以非旋光基團為氧烷基的液晶化合物 C8N2與非旋光基團為長烷鏈的液晶化合物CTC8N相比,後者具有較低的澄清點及穩定的藍相,但會抑制SmCA*相的生成。當以氟取代基的水楊醛亞胺結構之液晶分子 CTOC8NF與水楊醛亞胺結構之液晶分子 C8N2相比,前者具有較低的澄清點及穩定的SmA*相,但會抑制藍相及SmCA*相的生成。當以非旋光基團為長烷鏈炔基的液晶化合物 Y8BAN2與非旋光基團為長烷鏈的液晶化合物 CTC8N相比,後者具有較穩定的藍相、N*及SmA*相。當以氟取代基的水楊醛亞胺結構之液晶分子 CTY8NF與水楊醛亞胺結構之液晶分子 Y8BAN2相比,前者具有較低的澄清點及穩定的SmA*相,但會抑制藍相的生成。當以氟取代基的席夫鹼液晶分子 CTC8HF與席夫鹼液晶分子 CTC8HN相比,前者具有較低的澄清點及增加了TGBA*相,但會抑制藍相的生成。
In this article, four novel homologous series of chiral Schiff base liquid crystals designed and synthesized to investigate the effect of fluoro substituent, intramolecular hydrogen boning, the variation of achiral tail to investigate the mesomorphic properties of Schiff base molecules. The mesomorphic properties and their corresponding transition temperatures were primarily characterized by the microscopic textures and DSC thermograms. The first series of compounds CTCmN (m=6-8) exhibit the phase sequence: Iso.–BPI–N*–SmA*–Cr. and compound CTCmN (m=8) possesses the widest temperature range of the BPI phase (2.6 °C). Fluoro-substituted compounds CTCmNF (m=6-8) exhibit the phase sequence: Iso.–N*–SmA*–Cr., It can be seen that the introduction of fluoro substituent into the salicylaldimine core results in the suppression of BP phase. The results of the second series show that compounds CTYmNF (m=6-8) with linear alkynyl chain exhibit the phase sequence: Iso.–N*–SmA*–Cr. and compound CTYmNF (m=7) possesses the widest temperature range of the nematic phase (44.46 °C). In addition, compound CTYmNF (m=6) possesses the widest temperature range of the SmA* phase (83.56 °C). The third series of compounds CTOCmNF (m=6-8) with alkoxy tail exhibit the phase sequence: Iso. – N* – SmA* – Cr.. The results of the fourth series showed that Schiff base compounds CTC8HN and CTY8HN without hydroxyl group exhibit the phase sequence: Iso.–BPI–N*–SmA*– Cr.. Moreover, fluoro-substituted Schiff base compound CTC8HF exhibits the phase sequence: Iso.–N*–TGBA*–SmA*–Cr., indicating that the introduction of fluoro substituent into the rigid core of Schiff base compound with alkyl chain induce the TGBA* phase formation. However, both of fluoro-substituted Schiff base compound CTY8HF with linear alkynyl chain and CTOC8HF with alkoxy tail exhibit the phase sequence: Iso.–N*–SmA*– Cr. and have no the TGBA* phase formation. It can be seen that the incorporation of fluoro substituent into Schiff base compounds with linear alkynyl chain or alkoxy tail suppresses the formation of the frustrated phase.
ACKNOWLEDGEMENTSI
ABSTRACTII
中文摘要IV
TABLE OF CONTENTSVI
LIST OF SCHEMEIX
LIST OF TABLESX
LIST OF FIGURESXI
CHAPTER 11
INTRODUCTION1
1.1. Overview1
1.2. Cholesteric (Ch) or chiral nematic (N*) phase4
1.3. Chiral smectic phases6
1.3.1. Chiral smectic A phases (SmA*)6
1.3.2. Chiral smectic C phase (Ferroelectric phase, SmC*)7
1.3.3. Antiferroelectric (SmCA*) phase12
1.4. Frustrated phases18
1.4.1. Blue phases18
1.4.2. Twist grain boundary phase24
1.4.2.1. The TGBA* phase25
1.5. Motivation of study29
CHAPTER 2
EXPERIMENTAL34
2.1. Preparation of materials34
2.1.1. Synthesis of 4-formyl-3-hydroxyphenyl 4-octylbenzoate, I(m=8)39
2.1.2. Synthesis of 1-nitro-4-(octan-2-yloxy)benzene, 1-H40
2.1.3. Synthesis of (R)-4-(octan-2-yloxy)benzenamine, 2-H40
2.1.4. Synthesis of (E)-3-hydroxy-4-(((4-(octan-2-yloxy)phenyl)imino)methyl) phenyl 4-octylbenzoate, 4(n=8), CTCmN (m=8)41
2.2.1. Synthesis of ethyl 4-(1-alkynyl)benzoate, 342
2.2.2. Synthesis of 4-(1-alkynyl)benzoic acid, 443
2.2.3. Synthesis of 4-formyl-3-hydroxyphenyl 4-(1-alkynyl)benzoate, II 44
2.2.4. Synthesis of 2-fluoro-4-nitro-1-(octan-2-yloxy)benzene, 1-F45
2.2.5. Synthesis of 3-fluoro-4-(octan-2-yloxy)aniline, 2-F46
2.2.6. Synthesis of (E)-4-(((3-fluoro-4-(octan-2-yloxy)phenyl)imino)methyl) -3-hydroxyphenyl 4-(dec-1-yn-1-yl)benzoate, CTYmNF (m=8)46
2.4.1. Synthesis of 4-formylphenyl 4-octylbenzoate, IV47
2.4.2. Synthesis of 1-nitro-4-(octan-2-yloxy)benzene, 1-H49
2.4.3. Synthesis of (R)-4-(octan-2-yloxy)benzenamine, 2-H49
2.4.4. Synthesis of (E)-4-(((4-(octan-2-yloxy)phenyl)imino)methyl)phenyl 4-octylbenzoate, CTC8HN50
CHAPTER 3
RESULTS AND DISSCUSSION52
3.1. Chemical structure identification52
3.1.1. NMR studies52
3.1.2. Mesophase studies59
3.2. The study of mesomorphic properties of compounds CTCmN (m=6-8) and CTCmNF (m=6-8)60
3.2.1. Optical microscopy studies60
3.2.2. Differential scanning calorimetric (DSC) studies for the compounds CTCmN (m=6-8) and CTCmNF (m=6-8)61
3.3. The study of mesomorphic properties of a homologous series of CTYmNF (m=6-8)69
3.3.1. Optical microscopy studies69
3.3.2. Differential scanning calorimetric (DSC) studies for the compounds CTYmNF (m=6-8)69
3.4. The study of mesomorphic properties of a homologous series of CTOCmNF (m=6-8)74
3.4.1. Optical microscopy studies74
3.4.2. Differential scanning calorimetric (DSC) studies for the compounds CTOCmNF (m=6-8)74
3.5. The study of mesomorphic properties of a homologous series of CTC8HN and CTC8HF79
3.5.1. Optical microscopy studies79
3.5.2. Differential scanning calorimetric (DSC) studies for the compounds CTC8HN and CTC8HF80
3.6. The Comparisons of mesomrophic properties between compounds CTCmN (m=8), C8N2 and Y8BAN287
3.7. The Comparisons of mesomrophic properties between compounds CTCmN (m=8), C8N2, Y8BAN2, CTCmNF (m=8), CTYmNF (m=8) and CTOCmNF (m=8)89
3.8. The Comparisons of mesomrophic properties between compound C8N2, C8HN2, Y8BAN2, CTY8HN, CTC8N and CTC8HN91
3.9. The Comparisons of mesomrophic properties between compound CTC8HN and CTC8HF93
CHAPTER 4
CONCLUSIONS95
REFERENCES97
APPENDIX101
[1] D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, V. Vill, Handbook of Liquid Crystals, Ed., Wiley-VCH, Weinheim, 2(A), 3 (1998).
[2] I. Dierking, Texture of Liquid Crystals, Ed., Wiley-VCH, Weinheim, 2003.
[3] R. B. Meyer, L. Liebert, L. Strzelecki, P. Keller, J. Phys. Lett., 36, L69 (1975).
[4] A. D. L. Chandani, T. Hagiwara, Y. Suzuki, Y. Ouchi, H. Takezoe, A. Fukuda, Jpn. J.Appl. Phys., 27, L729 (1988).
[5] A. D. L. Chandani, Y. Ouchi, H. Takezoe, A. Fukuda, K. Terashima, K. Furukawa, A. Kishi, Jpn. J. Appl. Phys., 28, L1261 (1989).
[6] E. Gorecka, A. D. L. Chanani, Y. Ouchi, H. Takezoe, A. Fukuda, Jpn. J. Appl. Phys., 29, 131 (1990).
[7] J. W. Goodby, M. A. Waugh, S. M. Stein, E. Chin, R. Pindak, J. S. Patel, J. Am. Chem.Soc., 111, 8119 (1989).
[8] L. J. Yu, H. Lee, C. S. Bak, M. M. Labes, Phys. Rev. Lett., 36, 388 (1976).
[9] N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett., 36, 899 (1990).
[10] M. Yamawaki, Y. Yamada, N. Yamamoto, K. Mori, H. Hayashi, Y. Suzuki, Y.S. Negi, T. Hagiwara, I. Kawamura, H. Orihara, Y. Ishibahsi, Jpn. Display, 89, 26 (1989).
[11] J. Johno, A. D. L. Chandani, J. Lee, Y. Ouchi, H. Takezoe, A. Fukuda, K. Ioth, T. Kitazume, Proc. Jpn. Display, 22 (1989).
[12] F. Reinitzer, Monatsh. Chem., 9, 421 (1888).
[13] Z. Lehmann, Phys. Chem., 4, 462 (1889).
[14] H. Keller, P. M. Knoll, Liq Cryst., 5, 19 (1989).
[15] S. Garoff, R. B. Meyer, Phys. Rev. Lett., 38, 848 (1977).
[16] R.B. Meyer, L. Liebert, L. Strzelecki, P. Keller, J. Phys. Lett., 36, L69 (1998).
[17] S. Garoff, R. B. Meyer, Phys. Rev. A, 19, 338 (1979).
[18] D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, V. Vill, Handbook of Liquid Crystals , Ed., Wiley-VCH, Weinheim, 2(A), 127 (1998).
[19] D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, V. Vill, Handbook of Liquid Crystals, Ed., Wiley-VCH, Weinheim, 2(A), 118 (1998).
[20] H. S. Kitzerow, C. Bahr, Chirality in Liquid Crystals. Spinger: New York, 251 (2001).
[21] D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, V. Vill, Handbook of Liquid Crystals, Ed., Wiley-VCH, Weinheim, 2(B), 684 (1998).
[22] A. J. Seed, K. J. Toyne, J. W. Goodby, D. G. Mcdon nell, J. mater. Chem., 5, 1 (1995).
[23] X. Han, A. B. Padias, H. K. Jr, H. N. Hall, J. Polym. Sci., Part A: Polym. Chem., 37, 1703 (1999).
[24] D. Coates, G. W. Gray, Phys. Lett., 45A, 115 (1973).
[25] H. Stegemeyer, K. Bergmann, Liquid Crystals of One- and Two-Dimensional Order, edited by Helfrich, W., and Heppke, G., New York, Springer-Verlag, 161 (1980).
[26] H. Stegemeyer, T. H. Blumel, K. Hiltrop, H. Onusseit, F. Porsch, Liq. Cryst., 1, 3 (1986).
[27] P. P. Crooiter, Liq. Cryst., 5, 751 (1989).
[28] M. H. Li, V. Laux, H. T. Nguyen, G. Sigaud, P. Barois, N. Isaert, Liq. Cryst., 23, 389 (1997).
[29] E. Grelet, B. Pansu, H. T. Nguyen, Liq. Cryst., 28, 1121 (2001).
[30] M. Tanaka, A. Yoshizawa, J. Mater. Chem. C, 1, 315 (2013).
[31] H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajiyama, Nature Mater., 1, 64 (2002).
[32] H. J. Coles, M. N. Pivnenko, Nature, 436, 997 (2005).
[33] W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan, J. Guo, H. Yang, Adv. Mater., 21, 2050 (2009).
[34] M. Lee, S. T. Hur, H. Higuchi, K. Song, S. W. Choi, H. Kikuchi, J. Mater, Chem., 20, 5813 (2010).
[35] A. Yoshizawa, H. Iwamochi, T. Hirose, Y. Kogawa, Chem. Lett., 39, 170 (2010)
[36] J. W. Goodby, M. A. Waugh, S. M. Stein, E. Chin, R. Pindak, J. S. Patel, Nature, 337 (1989).
[37] P. G. D. Gennes, Solid State Commun., 10, 753 (1972).
[38] S. R. Renn, T. C. Lubensky, Phys. Rew. A, 38, 2132 (1988).
[39] K. Ihn Zasadzunski, R. Pindak, A. J. Slaney, J. W. Goodby, Science, 258, 275, (1992).
[40] Pucci, D.; Franescangeli, O.; Ghedini, M, Mol. Cryst. Liq. Cryst., 51, 372 (2001) .
[41] C.V. Yelamagged, V. P. Tamilenthi, D. S. Shankar Rao, G. G. Nair, K. Prasad, J. Mater, Chem., 19, 2906 (2009).
[42] C. C. Kao, Dissertation for master degree, Tatung University (2012).
[43] L. W. Chen, Dissertation for undergraduate, Tatung University (2013).
[44] L. Wang, W. He, M. Wang, M. Wei, J. Sun, X. Chen, H. Yang, Liq. Cryst., 40, 354–367 (2013).
[45] Y. Kogawa, A. Yoshizawa, Liq. Cryst., 38, 303–307 (2011).
[46] B. Li, W. He, L. Wang, X. Xiao and H. Yang, Soft Matter, 9, 1172 (2013).
[47] Macromolecules, 34, 5876-5884 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔