(3.238.186.43) 您好!臺灣時間:2021/02/28 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖家慶
研究生(外文):Chia-ching Liao
論文名稱:利用固定化二氧化鈦及紫外光進行臭氧催化苯甲酸廢水
論文名稱(外文):Catalytic Ozonation of Benzoic Acid Wastewater with Immobilized TiO2 and UV Radiation
指導教授:陳泰祥
指導教授(外文):Tai-shang Chen
口試委員:陳泰祥
口試委員(外文):Tai-shang Chen
口試日期:2014-07-14
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:81
中文關鍵詞:臭氧催化苯甲酸廢水處理二氧化鈦固定化
外文關鍵詞:catalytic ozonationBenzoic acidwastewater treatmenttitanium dioxideimmobilized
相關次數:
  • 被引用被引用:1
  • 點閱點閱:52
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對苯二甲酸在化學工業中是很重要化學物品之一,製造而產生的廢水中苯甲酸是造成高化學需氧量的主要原因,本研究探討利用固定化二氧化鈦與UV進行臭氧催化反應,用以降解苯甲酸實驗。
在實驗結果中可以發現,只利用臭氧降解pH3苯甲酸水溶液在反應時間第50分鐘時的移除率達到90%。利用臭氧搭配UV-C燈管降解pH3苯甲酸水溶液在反應時間第40分鐘時的移除率達到90%。而添加二氧化鈦搭配UV-A比只使用UV-C的臭氧氧化效果還好。
固定化二氧化鈦來搭配UV進行臭氧氧化苯甲酸是有效解決二氧化鈦均勻分散進行催化反應之後的回收處理問題,而降解的效率則關鍵在固定化的基材選擇以及二氧化鈦的溶膠-凝膠製成方法對於二氧化鈦的結晶影響。
Industrial development and progress, it is caused by environmental pollution and damage of human life, therefore, solving environmental contamination or prevention of the generation of pollutants is a very important issue now. Terephthalic acid is one of the chemicals in the chemical industry, it was made to produce benzoic acid and is the main cause of high chemical oxygen demand in wastewater. Traditional biological treatment methods have some drawbacks, so that advanced oxidation process become the popular wastewater treatment recently.
This study is investigated the catalytic ozonation of benzoic acid wastewater by ozonation use of immobilized titanium dioxide and UV. It could be found from the result, benzoic acid wastewater is degraded only by ozone to remove 90% of the reaction time of 50 minutes at pH3. Benzoic acid wastewater is degraded by ozone and UV-C to remove 90% of the reaction time of 40 minutes at pH3.And titanium dioxide is added with UV-A better than with only using UV-C ozonation of effects.
Catalytic ozonation of benzoic acid wastewater by ozonation with immobilized TiO2 and UV radiation is an effective solution to the problem of titanium dioxide recycling uniformly dispersed after the catalytic reaction, and the degradation efficiency is the key to the immobilized substrate selection and titanium dioxide sol-gel method made for crystallization of titanium dioxide.
誌謝 i
英文摘要 ii
中文摘要 iv
第一章 前言 1
1.1研究背景 1
1.2研究目的 5
第二章 文獻回顧 6
2.1高級氧化程序 6
2.2臭氧氧化法 6
2.2.1臭氧氧化之原理 10
2.2.2 O3/H2O2臭氧氧化之原理 16
2.2.3 O3/UV臭氧氧化之原理 17
2.3 TiO2光觸媒材料 18
2.3.1 TiO2光催化之機制 20
2.3.2 TiO2光催化之超親水性 22
2.3.3 TiO2光觸媒之晶體結構 22
2.3.4 TiO2光觸媒之固定化 26
2.4 溶膠-凝膠法 26
2.4.1 溶膠-凝膠法之優點 27
2.4.2 溶膠-凝膠法之基本原理 28
第三章 實驗 31
3.1實驗藥品與儀器 31
3.1.1實驗藥品 31
3.1.2實驗儀器 32
3.2 樣品製備流程與分析 33
3.2.1 固定化之基材製作 33
3.2.2 TiO2溶膠-凝膠的製備 35
3.2.3 TiO2溶膠-凝膠塗佈於基材 36
3.2.4 分析固定化之TiO2 37
3.3 實驗步驟 38
3.3.1 UV/Vis 分光光譜儀分析苯甲酸濃度 39
第四章 結果與討論 40
4.1 表面結構 40
4.2 不同pH值之苯甲酸水溶液最大吸收波波長 44
4.3 降解苯甲酸水溶液實驗 46
4.3.1 臭氧催化苯甲酸水溶液實驗 46
4.3.2 臭氧催化苯甲酸水溶液配合UV-C燈管實驗 48
4.3.3 臭氧催化苯甲酸水溶液配合UV-A燈管與TiO2粉末實驗 50
4.3.4 臭氧催化苯甲酸水溶液配合UV-A燈管與固定化TiO2實驗 52
4.4 在pH3、pH4、pH5之不同輔助降解苯甲酸比較 54
第五章 結論與建議 59
參考文獻 61
[1] Q. Wang, Y. Cheng, L. Wang, X. Li, Semicontinuous studies on the reaction mechanism and kinetics for the liquid-phase oxidation of p-xylene to terephthalic acid, Ind. Eng. Chemical Reviews, 46 (2007) 8980-8992.
[2] 陳韻如, 台灣生物多樣性的損失-哪些資源正在流失, http://ntur.lib.ntu.edu.tw/handle/246246/20060927114809304886
[3] D. F. Ollis., Comparative aspects of advanced oxidation processes, Acs Symposium Series, 518 (1993) 18-34.
[4] 蔡偉銑, 台灣石化工業發展過程的政治經濟分析, 東吳政治學報, 8 (1997) 157-224。
[5] K. G. Pillai, T. O. Kwon, I. S. Moon, Degradation of wastewater from terephthalic acid manufacturing process by ozonation catalyzed with Fe2+, H2O2 and UV light: Direct versus indirect ozonation reactions, Appl. Catal. B: Environ, 91 (2009) 319-328.
[6] M. A. Fox, M. T. Dulay, Heterogeneous photocatalysis, Chemical Reviews., 93 (1993) 341-357.
[7] P. V. Kamat, Photochemistry on nonreactive and reactive (semiconductor) surfaces, Chemical Reviews, 93 (1993) 267-300.
[8] K. I. Okamoto, Y. Yamamoto, H. Hanaka, and M. Tanaka, Heterogeneous photocatalytic decomposition of phenol over TiO2 powder, Bull. Chem. Soc. Jpn., 58 (1985) 2015-2022.
[9] 邱浚佑,呂昕如, 氣泡塔及攪拌槽中臭氧化處理程序之研究, 國立台灣大學台大工程學刊,82 (2001) 77-91。
[10] 魏佳玲, 環保之佼佼者-臭氧(O3), 化工技術, 6 (1993) 146-150。
[11] M. J. O’Neil, A. Smith, P. E. Heckelman, J. R. Obenchain Jr., Jo Ann R. Gallipeau, May Ann D’ Arecca, The Merck Index, Merck & CO. INC., 13 (2001).
[12] U. Jans, J. Hoigne, Activated Carbon and Carbon Black Catalyzed Transformation of aqueous ozone into OH-radicals, Ozone Sci. Eng, 20 (1998) 67-87.
[13] C. Gottschalk, J. A. Libra, A. Saupe, Ozonation of water and waste water, WILEY-VCH, New York, (2000).
[14] F. J Beltran, J. Rivas, P. A lvarez, R. Montero-de-Espinosa, Iron type catalysts for the ozonation of oxalic acid in water, Ozone, Sci. Eng, 24 (2002) 3553-3564.
[15] B. Langlais, D. A. Reckhow, D. R. Brink, Ozone in water treatment: applications and engineering, Lewis Publishers, AWWA, (1991).
[16] J. M. Monteagudo, M. Carmona, A. Dura’n, Photo-fenton-assisted ozonation of p-coumaric acid in aqueous solution, Chemosphere, 60 (2005) 1103-1110.
[17] W. Chu, K. H. Chan, Graham, N. J. D. Graham, Enhancement of ozone oxidation and its associated processes in the presence of surfactant: degradation of atrazine, Chemosphere, 64 (2006) 931-936.
[18] Y. P. Chiang, Y. Y. Liang, C. N. Chang, A. C. Chao, Differentiating ozone direct and indirect reactions on decomposition of humic substances, Chemosphere, 65 (2006) 2395-2400.
[19] Lenntech Water treatment solution, Ozone decomposition, Retrieved June 15, (2014), from
http://www.lenntech.com/library/ozone/decomposition/ozone-decomposition.htm
[20] V. Fontanier, V. Farines, J. Albet, S. Baig, J. Molinier, Study of catalyzed ozonation for advanced treatment of pulp and paper mill effluents, Water Res. 40 (2006) 303-310.
[21] Yu-Hsuan Cheng, Organic wastewater treatment by ozone-based advanced oxidation processes, Science Department of Chemical Engineering Tatung University, July (2013).
[22] 康力醫療儀器, 何謂光觸媒, Retrieved Jan 18, (2014), from http://photocatalyst.holisticphysio.com/mechanism.html

[23] Hsu-Yuan Chu, The effects of Fe3O4 interlayer and the addition of Fe(NO3)3.9H2O on the super-hydrophilicity of TiO2 thin films on the surface of IF steel, Science Department of Materials Engineering Tatung University, June (2008).


[24] K. Honda and A. Fujishima, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238(21) (1972) 37-38.
[25] Q. Fan, B. McQuillin, D.D.D. Bradley, S. Whitelegg, A.B. Sseddon, A solid state solar cell using sol-gel processed material and a polymer, Chemical Physic Letters, 347 (2001) 325.
[26] P. J. Senogles, J. A. Scott, G. Shaw and H. Stratton, Photocatalytic degradation of the cyanotoxin cylindrospermopsin, using titanium dioxide and UV irradiation, Water Research, 35 (2001) 1245-1255.
[27] R. Vogel, P.Hoyer and H. Weller, Quantum-sized PbS CdS Ag2S Sb2S3 and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors, J. Phys. Chem, 98 (12) (1994) 3183-3188.
[28] H. Tada and M. Tanada, Dependence of TiO2 photocatalytic activity upon its film thickness, Langmuir, 13 (1997) 360-364.
[29] R.Wang, K.Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Light induced amphiphilic surface, Nature, 388 (31) (1997) 431-432.
[30] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chemical Reviews, 95 (1995) 69-96.
[31] Sih-Dao Chen, The degradation of terephthalic acid wastewater by titanium dioxide thin film prepared by immersion method, Science Department of Materials Engineering Tatung University, December (2010).
[32] M. A. Fox and M. T. Dulay, Heterogeneous Photocatalysis, Chemical Reviews, 93 (1993) 341-357.
[33] P. V. Kamat, Photochemistry on nonreactive and reactive (semiconductor) surfaces, Chemical Reviews, 93 (1993) 267-300.
[34] K. I. Okamoto, Y. Yamamoto., H. Hanaka, M. Tanaka, A. Itaya, Heterogeneous photocatalytic decomposition of phenol over TiO2 powder, Bull. Chem. Soc. Jpn., 58 (1985) 2015-2022
[35] R. S. Sonawane, B. B. Kale, M. K. Dongare, Preparation and photo-catalytic activity of Fe-TiO2 thin films prepared by sol-gel dip coating, Materials Chemistry and Physics, 85 (2004) 52-57.
[36] 林有銘, 無所不在的環境清潔工-奈米光觸媒, 科學發展, 408 (2006)。
[37] T. Sumita, H. Otsuka, H. Kubota, M. Nagata, Y. Honda and R. Miyagawa, Ion-beam modification of TiO2 film to multilayered photocatalyst, Nuclear Instruments and Methods in Physics Research B, 148 (1999) 758-761.
[38] A. Hata, Y. Kai, I. Yamanaka, H. Oosaki, K. Hirota, and S. Yamazaki, Development of hydrophilic outside mirror coated with titania photocatalyst, JSAE Review, 21 (2000) 97-102.
[39] A. Labouriau and W.L. Earl, Titanium solid-state NMR in anatase brookite and rutile, Chemical Physics Letter, 270 (1997) 278-284.
[40] T. Sekiya, S. Ohta, S. Kamei, M. Hanakawa and S. Kurita, Raman spectroscopy and phase transition of anatase TiO2 under high pressure, Journal of Physics and Chemistry of Solids, 62 (2001) 717-721.
[41] N. Hossks,T. Sekiya and S. Kurita, Excitonic state in anatase TiO2 single crystal, Journal of Luminescence, 72-74 (1997) 874-875.
[42] V. Swamy and L. S. Dubrovinsky, Bulk modulus of anatase, Journal of Physics and Chemistry of Solids, 62 (2001) 673-675.
[43] K. Okimura, Low temperature growth of rutile TiO2 films in modified rf magnetron sputtering, Surface and Coatings Technology, 135 (2001) 286-290.
[44] D. R. Burgess, T. J. Anderson, P. A. Morris Hotsenpiller and J. L. Hohman, Solid precursor MOCVD of heteroepitaxial rutile phase TiO2, Journal of Crystal Growth, 166 (1996) 763-768.
[45] E. M. Levin, C. R. Robbins and H. F. Mcmurdie, Phase diagrams for ceramists volume VI, The American Ceramic Society, (1987).
[46] R. R. Bacas, J. Kiwi, Applied Catalysis B: Environmental, 1(16) (1998) 19-29.
[47] D. Curco, J. Gimenez, A. Addardak, S. Cervera-March, S. Esplugas, Effects of radiation absorption and catalyst concentration on the photocatalytic degradation of pollutants, Catalysis Today , Volume 76, 2-4, 15 November (2002) 177-188.
[48] M. Aguado, S. Cervera-March and J. Gimenez, Continuous photocatalytic treatment of mercury(II) on titania powders. Kinetics and catalyst activity, Chem. Eng. Sci., 50 (1995) 1561-1569.
[49] J. K. Burdett, T. Hugbands, J. M. Gordon, J. W. Richardson and J. V. Smith, Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295K, J. Am. Chem. Soc., 109 (1987) 3639.
[50] C. Anderson and A. J. Bard, An improved photocatalyst of TiO2/SiO2 prepared by sol-gel synthesis, Phys. Chem., 99(24) (1995) 9882.
[51] H. Al-Ekabi, N. Serpone, Kinetic studies in heterogeneous photocatalysis 1. photocatalytic degradation of chlorinated phenols in aerated aqueous sdutions over TiO2 supported on a glass matrix, Phys. Chem., 92(20) (1988) 5726.
[52] 孔令人, 陳曦等, 附著鈦半導體光催化劑光解可溶性染料的研究,環境科學學報, 17(4) (1996) 406。
[53] K. Tanaka, T. Hisanaga, I. Chin, Immobilized photocatalyst and method for immobilizing photocatalyst, Chem Abstr, 126 (1997) 121928.
[54] 鍾順和, 王杰慧等, TiO2-SiO2表面複合物的制備與表徵, 石油化工, 22(5) (1993) 307。
[55] H. Dislich, Ahagecoand, Chemic, 10(6) (1971) 363-370.
[56] B. C. Dave, B. Dunn, JSvalenline, etal. Sol-gel encapsulation methods for biosensors, Anal. Chem., 66(22) (1994) 1120A-1127A.
[57] J. Zaman, A. Chakma, Inorganic membrane reactors, J. Membr. Sci., 92 (1994) 1-28.
[58] 高祀建, 顧真安, 摻氟石英玻璃的研究, 矽酸鹽學報, 20 (1992) 442-448.
[59] H. Dislich and P. Hinz, Non-Cryst. Solids, 48 (1982) 11-16.
[60] Jinyuan Chen, Huijuan Wang, Xiuzhen Wei, Liping Zhu, Characterization, properties and catalytic application of TiO2 nanotubes prepared by ultrasonic-assisted sol-hydrothermal method, Materials Research Bulletin 47 (2012) 3747–3752.
[61] Keng-Fu Kuo, The effect of various TiO2 coating systems on the photo-induced decomposition of methylene blue and the hydrophilicity, Science Department of Materials Engineering Tatung University, June (2009).
[62] X. J. Yu, Y. Q. Wang, C. L. Li, S. M. Bai, D. Z. Sun, Study on deactivated mechanism and regeneration methods of TiO2 during photocatalytic benzoic acid, Acta Scientiae Circumstantiae, 26(3) (2006) 433-437.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔