( 您好!臺灣時間:2021/02/25 16:46
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Wei-Fung Hung
論文名稱(外文):A Comparative Study of Different Methods to Prepare TiO2 for Sonophotocatalytic Degradation of 2,4-dichlorophenoxyacetic Acid
指導教授(外文):Rong-Chi Wanh
口試委員(外文):Rong-Chi Wanh
外文關鍵詞:2'4-dichlorop -henoxyacetic acidTiO2sonophotocatalysisprobe-type ultrasoundanatasebrookite.
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
使用四種合成方法製備TiO2 粉末。由XRD、SEM、UV-vis確定光觸媒樣品的化學與物理性質,使用BET測量所有樣品的比表面積。
The sonophotocatalytic degradation of 2,4- dichlorophenoxyacetic acid (2,4-D) under ultraviolet irradiation combined with probe-type ultrasound was carried out in a jacketed glass reactor.
Four synthetic methods were used to prepare titanium oxide powder. The chemical and physical properties of the photocatalyst samples were determined by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and UV–vis diffuse reflectance spectra (UV-vis), also the specific surface area of all samples was measured by BET method.
The sonophotocatalytic activity performance of photocatalyst was evaluated by UV-vis spectrophotometer to detect the concentration of 2,4-dichlorophenoxyacetic acid (2,4-D). Hydrolysis-TiO2 prepared at heat treatment temperature of 85oC has higher photocatalytic than the other synthetic methods prepared at low temperature heat treatment. It can be attributed to that the synergistic effect of heterojunction in anatase/brookite composite can inhibit recombination rate of electrons and holes pairs to improve sonophotodegradation performance.
The operating conditions such as probe size, power intensity, photocatalyst loading, initial pH value of solution, effect of additions, pulse time mode, gas supplying and different kinds of photocatalysts were investigated in batch sonophotocatalytic system, the effect of flow velocity in continuous sonophotocatalytic system was also studied.
2.1 Introduction of advanced oxidation processes (AOPs) 6
2.2 Ultraviolet 7
2.3 Properties and structure of TiO2 8
2.3.1 Semiconductor basic property 12
2.3.2 The photochemical reaction of TiO2 18
2.4 Preparation of titanium dioxide powder 22
2.4.1 Sol-gel method 22
2.4.2 Hydrolysis method 23
2.4.3 Chemical vapor deposition (CVD) 24
2.4.4 Hydrothermal method 24
2.5 Degradation ways 25
2.6 Ultrasound 26
2.6.1 Cavitation 27
2.6.2 The mechanism of ultrasound in aqueous solution 31
2.6.3 Oxygen vacancies (Vo) 32
2.7 Effect of the photocatalytic reaction parameters 34
2.7.1 Effect of initial pH value 34
2.7.2 Effect of ultrasound probe size 35
2.7.3 Effect of photocatalyst loading 35
2.7.4 Effect of ultrasound power intensity 36
2.7.5 Effect of salts and peroxide 36
2.7.6 Effect of flow rates 37
2.7.7 Effect of dissolved gas 38
2.8 2,4-dichlorophenoxyacetic acid (2,4-D) 39
3.1 Materials 42
3.2 Apparatus and instruments 45
3.3 Preparation of Hydrolysis-TiO2 photocatalyst 53
3.3.1 Hydrolysis-TiO2 53
3.3.2 CH3COOH-TiO2 55
3.3.3 H2O2-TiO2 57
3.3.4 UV-TiO2 59
3.4 Instrumental apparatus for characteristic analysis of photocatalyst 61
3.4.1 Diffuse reflectance spectra analysis 61
3.4.2 X-Ray diffraction analysis 61
3.4.3 Scanning electron microscopy analysis 62
3.4.4 Brunauer-Emmett-Teller sorptometer 62
3.5 Experimental procedure 64
3.5.1 Blank experiment 64
3.5.2 Sonolytic degradation of 2,4-D 65
3.5.3 Photolytic degradation of 2,4-D 66
3.5.4 Photocatalytic degradation of 2,4-D 66
3.5.5 Photocatalytic degradation of 2,4-D in continuous system 67
3.5.6 Sonophotocatalytic degradation of 2,4-D 67
3.5.7 Sonophotocatalytic degradation of 2,4-D in series in continuous system 69
3.5.8 Sonophotocatalytic degradation of 2,4-D in parallel in continuous system 70
4.1 Properties of the TiO2 photocatalyst 75
4.1.1 Hydrolysis-TiO2 75
4.1.2 CH3COOH-TiO2 75
4.1.3 H2O2-TiO2 76
4.1.4 UV-TiO2 76
4.1.5 XRD properties of the prepared TiO2 photocatalyst 81
4.1.6 UV-Visible absorption spectra of the TiO2 photocatalyst 89
4.1.7 BET properties of photocatalyst 94
4.1.8 SEM properties of the TiO2 photocatalyst 96
4.2 Blank experiment 101
4.3 Sonophotocatalytic degradation of 2,4-D 104
4.3.1 Comparison of degradation efficiency with four synthetic methods to prepare titanium oxide powder photocatalyst 106
4.3.2 Effect of ultrasound pulse time mode 110
4.3.3 Effect of additive 112 Addition of sodium chloride 112 Addition of hydrogen peroxide 115
4.3.4 Effect of photocatalyst loading 117
4.3.5 Effect of initial pH value 119
4.3.6 Effect of ultrasound power intensity 122
4.3.7 Effect of different probe sizes 124
4.3.8 Effect of gas supplying 126
4.3.9 Effect of flow velocity in the continuous sonophotocatalytic
system( in series ) 128
4.3.10 Degradation flow velocity in the continuous sonophoto -catalytic system( in parallel ) 132
4.4 Sonophotodegradation kinetics 134
APPENDEX (P25-TiO2 data) 155
Adewuyi, Y.G., “Sonochemistry: Environmental Science and Engineering Applications,” Industrial & Engineering Chemistry Research, 40, 4681-4715 (2001).
Bahena, C.L., S.S. Martinez, D.M. Guzman and M.R.T. Hernandez, “Sonophotocatalytic Degradation of Alazine and Gesaprim Commercial Herbicides in TiO2 Slurry,” Chemosphere, 71, 982-989(2008).
Berberidou, C., I. Poulios, N.P. Xekoukoulotakis and D. Mantzavinos, “Sonolytic, Photocatalytic and Sonophotocatalytic Degradation of Malachite Green in Aqueous Solutions,” Applied Catalysis B: Environmental, 74, 63-72 (2007).
Carp, O., C.L. Huisman and A. Reller, “Photoinduced Reactivity of Titanium Dioxide,” Progress in Solid State Chemistry, 32, 33-177 (2004).
Castrantas, H.M. and R.D. Gibilisco, “UV Destruction of Phenolic Compounds under Alkaline Conditions,” ACS Symposium Series, 422, 77-99 (1990).
Chen, F., Y. Jiao, B. Zhao, H. Yang and J. Zhang, “Anatase Grain Loaded Brookite Nanoflower Hybrid with Superior Photocatalytic Activity for Organic Degradation,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 402, 66-71(2012).
Cushing, B.L., V.L. Kolesnichenko and C.J. O’Connor, “Recent Advances in The Liquid-phase Syntheses of Inorganic Nanoparticles,” Chemical Reviews, 104, 893-3946 (2004).
Fujishima, A. and K. Honda, “Electrochemical Photolysis of Water at A Semiconductor Electrode,” Nature, 238, 37-38 (1972).
Fujishima, A., I. Sopyan, M. Watanabe, S. Marasawa and K. Hashimoto, “A Film-type Photocatalyst Incorporating Highly Active TiO2 Powder and Fluororesin Binder: Photocatalytic Activity and Long-term Stability,” Journal of Electroanalytical Chemistry, 415, 183-186 (1996).
Fujishima, A., T.N. Rao and D.A. Tryk, “Titanium Dioxide Potocatalysis,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-21 (2000).
Gao, L., Q. Zhang and J. Guo, “Effects of Calcination on The Photocatalytic Properties of Nanosized TiO2 Powders Prepared by TiCl4 Hydrolysis,” Appl Catalysis B:Environmental, 26, 207-215 (2000).
Ge, M., J.W. Li, L. Liu and Z. Zhou, “Template-free Synthesis and Photocatalytic Application of Rutile TiO2 Hierarchical Nanostructures,” Industrial & Engineering Chemistry Research, 50(11), 6681-6687 (2011).
Gogate, P.R. and A.B. Pandit, “A Review of Imperative Technologies for Wastewater Treatment I: Oxidation Technologies at Ambient Conditions,” Advances in Environmental Research, 8, 501-551 (2004).
Gogate, P.R. and N. Golash, “Degradation of Dichlorvos Containing Wastewaters Using Sonochemical Reactors,” Ultrasonics Sonochemistry, 19, 1051-1060 (2012).
Gonzalez, A.S. and S.S. Martinez, “Study of the sonophotocatalytic degradation of basic blue 9 industrial textile dye over slurry titanium dioxide and influencing factors,” Ultrasonics Sonochemistry, 15 1038–1042 (2008).
Guan, Z.S., X.T. Zhang, Y. Ma, Y.A. Cao and J.N. Yao, “Photocatalytic Activity of TiO2 Prepared at Low Temperature A Photo-assisted Sol-gel Method,” J. Mater. Res, 16, 907-909(2001).
Henglein, A. and C. Kormann, “Scavenging of OH Radicals Produced in The Sonolysis of Water,” International Journal of Radiation Biology, 48, 251-258 (1985).
Hoffmann, M.R., A.J. Hoffmann and E.R. Carraway, “Photocatalytic Production of H2O2 and Organic Peroxides on Quantum Sized Semiconductor Colloids,” Environmental Science & Technology, 28, 776-785 (1994).
Ince, N.H., G. Tezcanli, R.K. Belen and I.G. Apikyan, “Ultrasound as A Catalyzer of Aqueous Reaction Systems:The State of The Art and Environmental Applications, ” Applied Catalysis B: Environmental, 29, 167-176 (2001).
Jing, Z., “Effect Of Precursor and Solvent on The Phase Transition Of Nano-TiO2 Prepared with Sol-gel,” Journal of Liaoning University of Petroleum & Chemical Technology, 29, 22-29(2009).
Joseph, C.G., G.L. Puma, A. Bono and D. Krishnaiah, “Sonophotocatalysis in Advanced Oxidation Process: A Short Review,” Ultrasonics Sonochemistry 16 583–589(2009).
Juretic, H., M. Montalbo-Lomboy and D. Grewell, “Hydroxyl Radical Formation in Batch and Continuous Flow Ultrasonic Systems,” Ultrasonics Sonochemistry 22 600-606 (2014).
Kamble, S.P., S.B. Sawant and V.G. Pangarkr, “Photocatalytic Mineralization of Phenoxyacetic Acid Using Concentrated Solar Radiation and Titanium Dioxide in Slurry Photoreactor,” Chemical Engineering Research and Design, 84, 355-362 (2006).
Kubrak, O.I., T.M. Atamaniuk, V.V. Husak and V.I. Lushchak, “Transient effects of 2,4-dichlorophenoxyacetic acid (2,4-D) exposure on some metabolic and free radical processes in goldfish white muscle,” Food and Chemical Toxicology, 59, 356–361 (2013).
Kwan, C.Y. and W. Chu, “A Study of The Reaction Mechanisms of The Degradation of 2,4-dichlorophenoxyacetic Acid by Oxalate-mediated Photooxidation, ” Water Research, 38, 4213-4221(2004).
Lee, B.I. and S. Kaewgun, “Deactivation and Regeneration of Visible Light Active Brookite Titania in Photocatalytic Degradation of Organic Dye,” Journal of Photochemistry and Photobiology A: Chemistry, 210, 162-167 (2010).
Levin, M. E. M., C.R. Robbins and H.F. McMurdie, “Phase Diagrams for Ceramists,” The American Ceramic Society, Inc., 76, 4150-4999 (1975).
Madhavan, J., P.S.S Kumar, S. Anandan, F. Grieser and M.Ashokkumar, “Sonophotocatalytic degradation of monocrotophos using TiO2 and Fe3+,” Journal of Hazardous Materials, 177, 944-949 (2010)
Makuta, T., Y. Aizawa and R. Suzuki, “Sonochemical Reaction with Microbubbles Generated by Hollow Ultrasonic Horn,” Ultrasonics Sonochemistry, 20, 997-1001 (2013).
Maness, P.C., S.Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum and W. A. Jacoby, “Bactericidal Activity of Photocatalytic TiO2 Reaction: Toward An Understanding of Its Killing Mechanism,” Applied and Environmental Microbiology, 65, 4094-4098 (1999).
Michael, G., “Photoelectrochemical Cells,” Nature, 414, 338-344 (2001).
Miguel, H., C. Lodeiro and J. Capelo-MartRnez, “The Power of Ultrasound” (2009).
Munro, I.C., G.L. Carlo, J.C. Orr, K.G. Sund, R.M. Wilson, E. Kennepohl, B.S. Lynch and M. Jablinske, “A Comprehensive, Integrated Review and Evaluation of the Scientific Evidence Relating to the Safety of the Herbicide 2,4-D,” Journal of Toxicology, 11, 559-664(1992).
Muruganandham, M. and M. Swaminathan, “Advanced Oxidative Decolourisation of Reactive Yellow 14 Azo Dye by UV/TiO2, UV/H2O2, UV/H2O2/Fe+2 Processes-A Comparative Study,” Separation and Purification Technology, 48, 297-303 (2006).
Oh, B.S., Y.J. Jung, Y.J. Oh, Y.S. Yoo and J.W. Kang, “Application of Ozone, UV and Ozone/UV Processes to Reduce Diethyl Phthalate and Its Estrogenic Activity,” The Science of Total Environment, 367, 681-693 (2006).
Patsios,S.I., V.C. Sarasidis and A.J. Karabelas, “A Hybrid Photocatalysis–ul -trafiltration Continuous Process For Humic Acids Degradation,” Separation and Purification Technology, 104 333-341 (2013).
Poulios, I., C. Berberidou, N.P. Xekoukoulotakis and D. Mantzavinos, “Sonolytic, Photocatalytic and Sonophotocatalytic Degradation of Malachite Green in Aqueous Solution,” Applied Catalysis B: Environmental, 74, 63-72 (2007).
Rehorek, A., M. Tauber and G. Gubitz, “Application of Power Ultrasound For Azo Dye Degradation,” Ultrasonics Sonochemistry, 11, 177–182 (2004).
Rengifo-Herrera, J.A., P. Osorio-Vargas, C. Pulgarin, A. Sienkiewicz, L.R. Pizzio, M.N. Blanco, R.A. Torres-Palma and C. Petrier, “Low-frequency Ultrasound Induces Oxygen Vacancies Formation and Visible Light Absorption in TiO2 P-25 Nanoparticles,” Ultrasonics Sonochemistry, 19, 383-386 (2012).
Saucedo-Lucero, J.O. and S. Arriaga, “Photocatalytic Degradation of Hexane Vapors in Batch and Continuous Systems Using Impregnated ZnO Nanoparticles” Chemical Engineering Journal 218, 358–367(2013).
Selli, E., C.L. Bianchi, C. Pirola and M. Bertelli, “Degradation of Methyl Tert-butyl Ether in Water: Effects of The Combined Use of Sonolysis and Photocatalysis,” Ultrasonics Sonochemistry, 12, 395-400 (2005).
Selli, E., C.L. Bianchi, C. Pirola, G. Cappelletti and V. Ragaini, “Efficiency of 1,4-dichlorobenzene Degradation in Water under Photolysis, Photocatalysis on TiO2 and Sonolysis,” Journal of Hazardous Materials, 153, 1136-1141 (2008).
Semiconductor Colloids,” Environmental Science & Technology, 28, 776-785 (1994).
Seymour, J.D. and R.B. Gupta, “Oxidation of Aqueous Pollutants Using Ultrasound: Salt Induced Engaancement” Industrial & Engineering Chemistry Research, 36, 3453-3459 (1997).
Suslick, K.S., “Ultrasound: It’s Chemical Physical And Biological Effects,” Journal of The Acoustical Society of America, 87, 919-920 (1990).
SZE, S.M., “Physics of Semiconductor Devices,” (1986).
Uekawa, N., J. Kajiwara, K. Kakegawa and Y. Sasaki, “Low Temperature Synthesis and Characterization of Porous Anatase TiO2 Nanoparticles,” Journal of Colloid and Interface Science, 250, 285-290(2002).
Wang, J., B. Guo, X. Zhang, Z. Zhang, J. Han and J. Wu, “Sonocatalytic Degradation of Methyl Orange in The Presence of TiO2 Catalysts and Catalytic Activity Comparison of Rutile And Anatase,” Ultrasonics Sonochemistry, 12, 331–337 (2005).
Wang, X., Y. Wei, J. Wang, W. Guo and C. Wang, “The Kinetics And Mechanism of Ultrasonic Degradation of P-nitrophenol in Aqueous Solution with CCl4 Enhancement,” Ultrasonics Sonochemistry, 19, 32-37 (2012).
Wu, C., X. Liu, D. Wei, J. Fan and L. Wang, “Photosonochemical Degradation of Phenol in Water,” Water Research, 35, 3927-3933 (2001).
WIKIPEDIA, Ultraviolet, http://en.wikipedia.org/wiki/Ultraviolet.
WIKIPEDIA, Advanced oxidation process, http://en.wiki pedia.org/wiki/Adv anced_oxidation_process.
Yang, G.P., X.K. Zhao, X.J. Sun and X.L. Lu, “Oxidative Degradation of Diethyl Phthalate by Photochemically Enhanced Fenton Reaction,” Journal of Hazardous Materials, 126, 112-118 (2005).
Yesodharan, E.P., S.G. Anju and S. Yesodharan, “Zinc Oxide Mediated Sonophotocatalytic Degradation of Phenol in Water,” Chemical Engineering Journal, 189-190, 84-93 (2012).
Zhang, H. and J.F. Banfield, “Understanding Polymorphic Phase Transformation Behavior During Growth of Nanocry Stalline Aggregates: Insights From TiO2,” Journal of Physical Chemistry C, 104, 3481-3487 (2000).
Zhao, J., T. Wu, G. Liu, H. Hidaka and N. Serpone, “Evidence for H2O2 Generation During The TiO2-assisted Photodegradation of Dyes in Aqueous Dispersions under Visible Light Illumination,” The Journal of Physical Chemistry B, 103, 4862-4867 (1999).
Zhu, L., H. Tang, L. Wang, W. Luo and Y. Wu, “Drastically Enhanced Ultrasonic Decolorization of Methyl Orange by Adding CCl4,” Ultrasonics Sonochemistry, 14, 253–258 (2007).
鄭敬賢, “超音波場對活性碳液相吸附與脫附之影響”,93學年碩士學位論文,元智大學化學工程學系碩士班 (2004).
鄭豐文, “不同方法製備TiO2於光催化降解2,4-二氯苯氧乙酸之研究”,101學年碩士學位論文,大同大學化學工程學系碩士班 (2012).
謝辰芳, “製備界面活性劑改質之光觸媒及其分解水中二酚基丙烷之研究”,96學年碩士學位論文,雲林科技大學環境與安全衛生工程系碩士班 (2007).
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔