跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 03:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃聖揮
研究生(外文):Sheng-Huei Huang
論文名稱:以聚乙烯-乙烯醇分子模版結合石英震盪天平對咖啡因之辨識與檢測
論文名稱(外文):Recognition and detection of caffeine with molecularly imprinted Poly(ethylene-co-vinyl alcohol) integrated onto a quartz crystal microbalance sensor
指導教授:顏聰榮顏聰榮引用關係
指導教授(外文):Tsong-Rong Yan
口試委員:顏聰榮
口試委員(外文):Tsong-Rong Yan
口試日期:2014-01-22
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程學系(所)
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:85
中文關鍵詞:石英晶體微天平分子模板咖啡因乙烯-乙烯醇
外文關鍵詞:Caffeinemolecularly imprintedquartz crystal microbalance sensorsethylene - vinyl alcohol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:581
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要目的藉由乙烯-乙烯醇將製備之分子模板高分子以薄膜之形式覆膜於石英晶片上,並結合石英晶體微天平感測器(QCM),製作咖啡因分子模板之測定。以不同莫耳比例的乙烯-乙烯醇共聚合高分子(27mol%、32mol%、38 mol%與44 mol%),使咖啡因與高分子間進行鍵結,產生之模板具有辨識咖啡因的孔洞,即為分子拓印模板 (Molecular impreinted polymer, MIP)。研究結果得知,藉由27 mol%乙烯-乙烯醇製備之咖啡因分子模板(C-MIP)為較佳之高分子材料選擇。模板和測試標的物之反應時間以30min為最佳,27 mol%咖啡因分子模板和16ppm之咖啡因溶液反應30min後,於QCM上量測其頻率差可達到159.8Hz,在咖啡因濃度2ppm~16ppm之間有線性關係;咖啡因分子模板可重覆使用6次其頻率變化仍維持在90%。在本研究中已將乙烯-乙烯醇之製備技術,結合QCM晶片製作之咖啡因分子模板,初步開發出可應用於檢測咖啡因溶液之非生物檢測系統。
The main purpose of this study by (ethylene - vinyl alcohol) polymer molecular template in the form of slurry preparation of thin film coated on a quartz crystal chip, combined with the quartz crystal microbalance sensors (QCM), making the caffeine molecule imprinted templates for detection of caffeine. In different molar proportions of (ethylene - vinyl alcohol )polymer of the polymerization (27mol%, 32mol%, 38 mol% and 44 mol%), mixed with caffeine for the bonding between the polymer. Then, after removed the caffeine, the template generation of holes for detection of caffeine, is called Molecular imprinted polymer, (MIP). Based on research results indicated that the 27 mol% concentrations of ethylene - vinyl alcohol caffeine molecule template preparation of polymer materials was the better choice. The optimal reaction time for caffeine MIP template and caffeine molecular was determined to be 30 min. The 27 mol% caffeine molecularly imprinted template incubated with different concentration of caffeine at 30 min, in the amount of QCM measurement frequency difference can reach 159.8Hz. There is a linear relationship between 2 ppm ~ 16 ppm concentrations of caffeine. The caffeine molecule templates can be reused six times its frequency variation remained at 90%. In the present study has been established (ethylene - vinyl alcohol) preparation techniques, combined with caffeine molecule templates QCM chips produced are initially developed can be applied to non-biological detection system to detect the caffeine.
目錄
致謝 i
中文摘要 ii
ABSTRACT iii
目錄iv
圖目錄vii
表目錄x
第一章 前言1
1.1 研究動機1
第二章 文獻回顧與理論基礎3
2.1 模板分子簡介3
2.1.1 咖啡因3
2.1.2 咖啡因生理作用4
2.1.3去除咖啡因的方法5
2.2. 分子拓印技術(Molecularly imprinted technology)7
2.2.1分子拓印之原理7
2.2.2分子模板對目標物之辨識因素9
2.2.3分子拓印模板的合成13
2.2.4分子拓印模板具有以下特色14
2.2.5分子拓印模版之應用16
2.3. 聚乙烯-乙烯醇(Poly(ethylene-co-vinyl alcohol)19
2.3.1 聚乙烯-乙烯醇的結構19
2.3.2聚乙烯-乙烯醇聚合原理19
2.3.3相轉換理論與機制20
2.2.4乙烯-乙烯醇生物相容性及其應用24
2.4. 壓電石英晶體微天平25
2.4.1石英晶體之壓電性25
2.4.2石英壓電微天秤偵測理論模式29
2.4.3液態下石英壓電微天秤偵測模式修正32
2.4.4壓電石英晶體於感測器上的應用36
2.4.4.1氣相石英晶體感測器39
2.4.4.2液相石英晶體感測器40
第三章 實驗材料與方法43
3.1實驗材料43
3.1.1 藥品43
3.1.2 實驗儀器43
3.2 實驗流程44
3.3實驗方法與步驟45
3.3.1石英晶片清洗45
3.3.2分子拓印溶液配製方法45
3.3.3分子拓印薄膜的製備方法46
3.4.4 檢測46
3.5不同種類聚乙烯-乙烯醇拓印模板對目標分子之吸附實驗47
3.6 27 mol%咖啡因分子模板檢量線測試47
3.7 27 mol%咖啡因分子模板重覆性實驗47
第四章 結果與討論48
4.1咖啡因分子模板最適化之確認48
4.1.1時間為10分鐘,不同乙烯-乙烯醇比例於氣態QCM檢測頻率化49
4.1.1.1 27 mol%MIP與NIP吸附10min頻率變化49
4.1.1.2 32 mol%MIP與NIP吸附10min頻率變化50
4.1.1.3 38 mol%MIP與NIP吸附10min頻率變化52
4.1.1.4 44 mol%MIP與NIP吸附10min頻率變化53
4.1.2時間為30分鐘,不同乙烯-乙烯醇比例於氣態QCM檢測頻率變化55
4.1.2.1 27 mol%MIP與NIP吸附30min頻率變化56
4.1.2.2 32 mol%MIP與NIP吸附30min頻率變化57
4.1.2.3 38 mol%MIP與NIP吸附30min頻率變化58
4.1.2.4 44 mol%MIP與NIP吸附30min頻率變化59
4.2 27 mol%咖啡因分子模板檢量線測試62
4.3 27 mol%咖啡因分子模板重覆性實驗63
第五章結論65
參考文獻66
[1] Sellergren,B.2001. Molecularly Imprinted Polymers.Elsevier Science, Amsterdam , Netherlands.

[2] Andersson ,H.,K, Haupt C.,Allender, C.,Alexander, M.,Whotcombe,
S.,Piletsky, B.,Sellergren, I.,icholls. 2002.Fundamentals of Molecular Imprinting, Notes of MIP Pre-Conference Course, Second International Workshop on Molecularly Imprinted Polymers,
La Grande Motte . France Sept.16-19th .

[3] 吳佳怡,2003,分子拓印高分子之製備,國立中央大學化學工程與材料工程研究所碩士論文。

[4] Ou, S.H.,M.C.Wu.,T.C.Chou.,and C.C.Liu. 2004.Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme. Analytica Chimica Acta, 504(1): p. 163-166.

[5] Bereli, N.,Andac,M.,Say,R.,and Galaey,IY.,Denizli,a. 2008.Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels. Journal of Chromatography A, 1190(1-2): p. 18-26.

[6] K. Haupt, Analytical Chemistry, 2003.A377.

[7] Tougu ,V. ,and Kesvatera ,T .2001."Comparison of salt effects on the reactions of acetylcholinesterase with cationic and anionic inhibitors".Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol. 1544, pp. 189-195.

[8] Oral, E., and Peppas ,N A. 2006."Hydrophilic molecularly imprinted poly(hydroxyethyl-methacrylate) polymers." Journal of Biomedical Materials Research Part A, vol. 78A, pp. 205-210.

[9] Vlatakis ,G., Andersson, L. I., Muller,R., and Mosbach., K. 1993."Drug assay using antibody mimics made by molecular imprinting," Nature, vol. 361, pp. 645-647.
[10] Matsunaga, T.,Hishiva,T.,Takeuchi,T. 2007."Surface plasmon resonance sensor for lysozyme based on molecularly imprinted thin films," Analytica chimica acta, vol. 591, pp. 63-7.

[11] Bossi,A., F, Bonini., A.P.F,Turner.,S.A,Piletsky.2007. "Molecularly imprinted polymers for the recognition of proteins: the state of the art," Biosensors & bioelectronics, vol. 22, pp. 1131-1137.

[12] Bereli,N., Andac, M.,. Baydemir, G., and Say, R., Galaev, IY., Denizli A. 2008."Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels," Journal of chromatography. A, vol. 1190, pp. 18-26.

[13] Jentzmik ,F., C, Stephan., K, Miller., M,Schrader., A, Erbersdobler., G, Kristiansen., M, Lein., and K, Jung. 2010 ."Sarcosine in Urine after Digital Rectal Examination Fails as a Marker in Prostate Cancer Detection and Identification of Aggressive Tumours," European Urology, vol. 58, pp. 12-18.

[14] Holthoff, E.L., and Bright, F.V. 2007.Molecularly templated materials in chemical sensing, Analytica Chimica Acta, 594, 147-161.

[15] Ansell, R.J. 2004. Molecularly imprinted polymers in pseudoimmunoassay, Journal of Chromatography B, 804, 151-165.

[16] Wulff, G., Sarhan, A. ,and Zabrocki, K. 1973. Enzyme-analogue built polymers and their use for the resolution of racemates
Tetrahedron Letters, 14, 4329-4332.

[17] Cunliffe ,D., Andrew, K ., Cameron, A.2005. "Molecularly imprinted drug delivery systems," Advanced drug delivery reviews, vol. 57, pp. 1836-1853.

[18] Lee, M.H ., James, L.T. , Min,H.H.,Ching ,Y.,and Hung,Y.L.
2010."Synthesis of magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) nanoparticles and their uses in the extraction and sensing of target molecules in urine," ACS applied materials & interfaces, vol. 2, pp. 1729-1736.

[19]Augusto,F., Eduardo,C., Raquel.,G.C.S., Sandra,R.R.,and Alex,D.B., Edmar,M.2010. "New sorbents for extraction and microextraction techniques," Journal of chromatography. A, vol. 1217, pp. 2533-2542.

[20] Fischer,L., R. Mueller., B. Ekberg,, and K. Mosbach. 1991. "Direct enantioseparation of β-adrenergic blockers using a chiral stationary phase prepared by molecular imprinting," Journal of the American Chemical Society, vol. 113, pp. 9358-9360.

[21] Young, T.H., and L.W. Chen.1995."Pore formation mechanism of membranes from phase inversion process," Desalination, vol. 103, pp. 233-247.

[22] Shun, C. T., and T. H. Young. 2000."The effect of surface properties of EVAL membranes on the inflammatory response," Materials Science and Engineering: C, vol. 13, pp. 75-83.

[23] Young,T.H., W.Y. Chuang., C.W. Wei., and C.Y. Tang.2001."Investigation of the drug distribution and release characteristics from particulate membranes," Journal of Membrane Science, vol. 191, pp. 199-205.

[24] Young,T.H., Liao,T.H., Ping,C., Wei,M.Y., Li,Y.C.1999. "Prediction of EVAL membrane morphologies using the phase diagram of water–DMSO–EVAL at different temperatures," Polymer, vol. 40, pp. 2189-2195.

[25] Young,T.H., Dong,T.L., Li,Y.C., Yao,H.H., Wen,Y.C.
1999."Membranes with a particulate morphology prepared by a dry–wet casting process," Polymer, vol. 40, pp. 5257-5264.


[26] Boom, R.M., I,M.W., Th,V.D.B., C,A. S.1992 "Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive," Journal of Membrane Science, vol. 73, pp. 277-292.

[27] Young ,T.H., and L,W. Chen.1991. "A diffusion-controlled model for wet-casting membrane formation," Journal of Membrane Science, vol. 59, pp. 169-181.

[28] Smolders, C.A., A,J. R., R,M. B., I,M.W.1992. "Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids," Journal of Membrane Science, vol. 73, pp. 259-275.

[29] Luo ,R.L., T,H. Young., and Y,M. Sun. 2003. “Structure formation and characterization of EVAL membranes with cosolvent of isopropanol and water”, Polymer, vol.44, pp.157-166.

[30] Lin, H. Y., M, H. Ho., James L,Thomas., and M, H. Lee. 2009. "Instant Formation of Molecularly Imprinted Poly(ethylene-co-vinyl alcohol)/Quantum Dot Composite Nanopaticles and Their Use in One-pot Urinalysis," Biosensors and Bioelectronics.

[31] Lee, M. H.,T,C. Tsai., J, L. Thomas., and H, Y. Lin.2008 "Recognition of creatinine by poly(ethylene-co-vinylalcohol) molecular imprinting membrane," Desalination, vol. 234, pp. 126-133.

[32] Lai ,P. S., M, J. Shieh., C, L. Pai., C, Y. Wang., and T, H. Young.2006. "A pH-sensitive EVAL membrane by blending with PAA," Journal of Membrane Science, vol. 275, pp. 89-96.

[33] Young, T. H., W, Y. Chuang., M, Y. Hsieh., L, W. Chen., and J, P. Hsu. 2002."Assessment and modeling of poly(vinyl alcohol) bioartificial pancreas in vivo," Biomaterials, vol. 23, pp. 3495-3501.

[34] 吳宗正,1990,壓電晶體生物感測器之研究與其應用,台灣大學農藝研究所博士論文.

[35] 施正雄,壓電晶體化學感測器開發及應用,科儀新知。第二十一卷第四期.
[36] Dakin, M.R., and D,A. Buttry. 1989. Electrochemical applications of the quartz crystal microbalance. Anal. Chemistry. 61: 1147-1154.

[37] Sullivan, C.K.O. and G,G. Guilbault. 1999. Commercial quartz crystal microbalances-theory and application. Biosen Bioelectron. 14: 663-670.
[38] 劉世隆,2002,以位置篩選法合成組合化學胜肽庫應用於氣體辨識材料之研究,東華大學生物技術研究所碩士論文.

[39] Buttry, D.A., and M,D.Ward.1992. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance.Chem. Rev. 92:1355.

[40] Sauerbrey, G. 1959. Use of vibrating quartz for thin film weighing and microweighing. Z. Phys. 155: 206–222.

[41] Martin, S.J., V,E. Granstaff., and G,C. Frye. 1991. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 63: 2272–2281.

[42] Martin, S.J., G,C. Frye., A,J. Ricco., and S,D. Senturia. 1993. Effect of surface roughnesson the response of thickness-shear mode resonators in liquids. Anal. Chem. 65: 2910-2922.

[43] Uttenthaler, E. C. Koslinger, and S. Drost. 1998.Quartz crystal biosensor for detection of the African Swine Fever disease. Anal. Chim. Acta. 362: 91-100.

[44] Lu C., and A.W. Czanderna(Eds.). 1984. “Application of Piezoelectric Quartz Crystal Microbalance.” Elsevier Science Publishing Company Inc.

[45] Konash, P. L., and G, J. Bastiaans.1980. “Piezoelectric Crystal as Detectors in Liquid Chromatography.” Anal. Chem.,52,1929-1931.

[46] Nomura, T.1981. “Single-Drop Method for Determination of Cyanide in Solution with a Piezoelectric Quartz Crystal.” Anal.Chim. Acta., 124, 81-84.

[47] Nomura, T., and M, Iijima.1981. “Electrolytic Determination of Nanomolar Concentrations of Silver in Solution with a
Piezoelectric Quartz Crystal.” Anal. Chim. Acta., 131, 97-102.

[48] Thompson ,M., C, L. Arthur., G, K. Dhaliwal. 1986. “Liquid-Phase
Piezoelectric and Acoustic Transmission Studies of Interfacial
Immunochemistry.” Anal. Chem., 58, 1206-1209.

[49] Murumatsu, H., K, Kajiwara., E, Tamiya., and I, Karube. 1986. “Piezoelectric Immuno Sensor for the Detection of Candidaalbicans Microbes.” Anal. Chem., 188, 257-261.

[50] 林佳珈,2006,穿膜胜肽與生物細胞膜間的交互作用之探討(Ι)-膽固醇的含量對蜂毒胜肽穿膜機制之影響,中央大學化學工程與材料工程研究所碩士論文.

[51] Grate, J. W., S, J. Martin., R, M. White.1993. “Acoustic wave
microsensors.” Anal. Chem., 65, A940-A948.

[52] King, W. H.1964. “Piezoelectric Sorption Detector.” Anal. Chem. 36,1735-1739.

[53] Leyva J. A. M., J. L. H. H. Decisneros, D. G. G. Debarreda, 1993. “ A Coated Piezoelectric Crystal Sensor for Acetic-Acid Vapor
Determination.” Talanta, 40, 1725-1729.

[54] Okahata ,Y., H, Ebato.2003. “Synthetic Chemoreceptive Membranes .11. Detection of Odorous Substances by Using a Lipid-Coated Quartz-Crystal Microbalance in the Gas-Phase.” Bulle. Chem. Soc. Jpn., 63,3082-3088.


[55] Muramatsu, H., K, Kajiwara., E. Tamiya, I. Karube.1986. “Piezoelectric Immunosensor for the Detection of Cabdida Albicans Microbes.” Alalytic Chimica. Acta., 188, 257-261.

[56] Barnes C., C. D’Silva., J, P. Jones., T,J. Lewis. 1992 “Lectin Coated
Piezoelectric Crystal Biosensors.” Sensor Actuat B-Chem., 7, 347-350.

[57] Konig, C., M, Gratzel. 1993. “Development of aPiezoelectric Immunosensor for the Detection of Human Erythrocytes.”Alalytic Chimica. Acta., 276, 329-333.

[58] KoBlinger, C., S, Drost., F. Aberl.,and H, Wolf., S, Koch., P, Woias., 1992.“A Quartz Crystal Biosensor for Measurement in Liquid.”
Biosens. Bioelectron., 7, 397-404.

[59] Konig, C., M, Gratzel. 1994 “A Novel Immunosensor for Herpes
Viruses.” Anal. Chem., 66, 341-344.

[60] Yamaguchi, S., T,S.1993. “Adsorption, Immobilization,
and Hybridization of DNA Studied by the Use of Quartz
Crystal Oscillators.” Anal. Chem., 65, 1925-1927.

[61] Su, H., K,M. R., Kallury, M, T. 1994. “Interfacial Nucleic
Acid Hybridization Studied by Random Primer 32P Labeling
and Liquid-Phase Acoustic Network Analysis.”, 66, 769-777.

[62] Chung,I.C., C,C. Chang., H,S. Chiu., S,F. Jiang., M,H. Lee ., B,D. Liu .,C,Y. Huang., and H,Y. Lin.2010. “A Portable Electrochemical Sensor for Caffeine and(-)Epigallocatechin gallate (EGCG) Based on Molecularly Imprinted Poly(Ethylene-co-Vinyl-Alcohol) Recognition Element”, 1-2.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top