(3.237.234.213) 您好!臺灣時間:2021/03/09 13:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林于智
研究生(外文):Yu-Chih Lin
論文名稱:利用法夫酵母的β-呋喃果糖苷酶合成新果寡糖動力學的研究
論文名稱(外文):Study of Enzyme Kinetics of Neofructooligosaccharides Formation Mediated By β-fructofuranosidase From Xanthophyllomyces dendrorhous
指導教授:許垤棋
指導教授(外文):Dey-Chyi Sheu
口試委員:許垤棋
口試委員(外文):Dey-Chyi Sheu
口試日期:2014-07-30
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程學系(所)
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:67
中文關鍵詞:酵素純化6G-果糖苷酶法夫酵母新果寡糖
外文關鍵詞:neofructooligosaccharidesXanthophyllomyces dendrorhous6G-fructofuranosidase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
法夫酵母(Xanthophyllomyces dendrorhous)BCRC 21346 的6G-果糖苷酶可以將蔗糖轉變成 neokestose、neonystose、果糖、葡萄糖以及少量的1-kestose。在高劑量的酵素反應液中可發現少量的neosucrose、6-kestose以及nystose。新果寡糖包括neokestose和neonystose,是重要的益生源(prebiotics)。蔗糖經6G-果糖苷酶作用,首先生成neokestose(FGF)和少量的1-kestose(GF2),之後,neokestose逐漸減少,而neonystose(FGF2)逐漸增加。反應液中的四醣neonystose越多,則寡糖產率越低。因為二分子的蔗糖可生成一分子的三醣neokestose,淨轉化率是0.74;而三分子的蔗糖才可生成一分子的四醣neonystose,淨轉化率是0.65。用600 g/L的蔗糖溶液,每公克蔗糖的酵素劑量為10 U,在40℃,pH 6.5的條件下反應。
Intracellular 6G-fructofuranosidase (6G-FFase), a kind of fructosyl transferase, from culture of Xanthophyllomyces dendrorhous BCRC 21346 can converte sucrose into neokestose, neonystose, fructose, glucose and small amount of 1-kestose. Furthermore, neosucrose, 6-kestose and nystose are also found in the reaction mixture with high dose of 6G-FFase. Neo-fructosaccharides (neo-FOS) comprises neokestose and neonystose. Neo-FOS gained increasing interest due to its superior bifidogenesity, and chemical- and heat-stability compared to currently available inulo-type FOS. During neo-FOS production using sucrose as the substrate, neokestose was firstly produced accompany with the formation of small amount of 1-kestose. Then neokestose declined due to the conversion of neokestose into neonystose. The more tetrasaccharide neonystose was formed, the less FOS was obtained. This is because two moles of sucrose yield one mole of neokestose and three moles of sucrose yield one mole of neonystose. When 600 g/L of sucrose and 6000 U of 6G-FFase were reacted at 40oC and pH 6.5, FOS peaked at 4 h of reaction. Maximum FOS at 362.4 g/L was obtained. The FOS mixture consisted of the following saccharides in grams per liter: fructose 20.3, glucose 152.3, sucrose 59.6, neosucrose 4.8, neokestose 297.5, 1-kestose 26.9 and neonystose 38.1. One gram initial sucrose yielded 0.60 g of FOS. The FOS and neo-FOS accounted 60.3% and 55.9% of total carbohydrates on a dry weight basis, respectively.
目錄
謝誌 I
中文摘要 III
ABSTRACT IV
目錄 VI
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
第二章 文獻回顧 4
2-1 寡糖的定義與其特點 4
2-1.1 寡糖的生理功能: 4
2-2 果寡糖(FRUCTOOLIGOSACCHARIDES,FOS) 7
2-2.1 果寡糖的化學結構 7
2-2.2 果寡糖的來源 10
2-2.3 果寡糖的製備 11
2-2.4 果寡糖的保健與應用 11
2-3 新果寡糖(NEO-FRUCTOOLIGOSACCHARIDE ;NEO-FOS) 13
2-3.1 新果寡糖的化學結構 13
2-3.2 新果寡糖的製備 14
2-3.3 新果寡糖的保健與應用 15
2-4 果糖轉移酶之簡介 17
2-5 高效能液相層析儀(HIGH PERFORMANCE LIQUID CHROMATOGRAPHY HPLC) 20
2-5.1 HPLC原理 20
2-5.2 HPLC 構造 21
2-5.3 HPLC操作方法 23
2-5.4 HPLC參數設定 24
2-6 DNS介紹 25
第三章 材料與方法 26
3-1 材料 26
3-1.1 酵素來源 26
3-1.2 藥品 26
3-1.3 儀器 26
3-2 實驗方法 27
3-2.1 測試不同pH值對酵素活性的影響 27
3-2.2 測試不同溫度對酵素活性的影響 28
3-2.3 測試酵素pH穩定性 29
3-2.4 測試酵素熱穩定性 30
3-2.5 反應時間對酵素生產果寡糖的影響 31
3-2.6 反應溫度對酵素生產果寡糖的影響 32
3-2.7 蔗糖濃度對酵素活性的影響 33
3-2.8 Km、Vmax的計算 34
第四章 結果與討論 35
4-1 不同因子對酵素功能的影響 35
4-1.1 pH值對酵素活性的影響 35
4-1.2 溫度對酵素活性的影響 36
4-1.3 酵素pH穩定性 37
4-1.4 酵素熱穩定性 38
4-1.5 反應時間對酵素生產果寡糖的影響 39
4-1.6 反應溫度對酵素生產果寡糖的影響 41
4-1.7 蔗糖濃度對酵素活性的影響 43
4-1.8 Km、Vmax 45
第五章 結論 46
參考文獻 47
參考網頁 53

圖目錄

圖 一、果寡糖的三種化學結構 3
圖 二、 果寡糖 (FOS) 和6-Kestose 之化學結構圖 9
圖 三、新果寡糖的分子結構 13
圖 四、轉移酶的反應機制-糖苷酶和果糖基轉移酶。 19
圖 五、 HPLC裝置示意圖 23
圖 六、DNS反應機制 25
圖 七、 pH值對BCRC 21346生產之酵素酵素活性的影響 35
圖 八、 溫度對BCRC 21346生產之酵素活性的影響 36
圖 九、BCRC 21346 酵素對pH的穩定性 37
圖 十、BCRC 21346 酵素對溫度的穩定性 38
圖 十一、反應時間對BCRC 21346 酵素反應產生糖類的影響 39
圖 十二、反應時間對BCRC 21346 酵素產生果寡糖的影響 40
圖 十三、反應溫度對BCRC 21346 酵素產生糖類的影響 41
圖 十四、反應溫度對BCRC 21346 酵素產生果寡糖的影響 42
圖 十五、蔗糖濃度度對BCRC 21346 酵素反應產生糖類的影響 43
圖 十六、蔗糖濃度度對BCRC 21346 酵素產生果寡糖的影響 44
圖 十七、蔗糖濃度度對BCRC 21346 酵素產生NK及1-K的影響 44
圖 十八、 BCRC 21346 酵素之Km與Vmax 45

表目錄
表 一、果寡糖在天然食物中的含量 10
表 二、2007年日本各類寡糖的需求量及平均價格 12
表 三、 不同微生物所生產果糖轉移酶的特性 17
參考文獻
1.李澤宏、王均琍。六種菇菌纖維素分解酵素與木聚醣分解酵素活性之分析。高雄區農業改良場研究彙報 第20卷第1期。
2.陳筱祺。2010。固定化葡萄糖苷轉移酶與酵母菌生產高純度異麥芽寡糖。大同大學生物工程學研究所碩士論文。
3.鄭妙芬。2013。法夫酵母的果糖轉移酶的部分純化之研究。大同大學生物工程學研究所碩士論文。
4.Chen, J.X., X. Xu, Y. Ning, Z. Jin, Y. Tain, 2011. Biochemical characterization of an intracellular 6G-fructofuranosidase from Xanthophyllomyces dendrorhous and its use in production of neo-fructooligosaccharides (neo-FOSs). Bioresour. Technol. 17, 151–721
5.Dimitris C, Robert AR ed. 2009. Prebiotics and probiotics science and technology. ISBN:978-0-387-79057-2.
6.Gibson GR, Willis CL, van Loo J. 1994. Non-digestible oligosaccharides and bifidobacteria –implications for health. Int Sugar J 96, 381–387.
7.Goffin D, Wathelet B, Blecker C, Deroanne C, Malmendier Y, Paquot M. 2010a. Comparison of the glucooligosaccharide profiles produced from maltose by two different transglucosidases fromAspergillus niger. Biotechnol Agron Soc Environ 14:607–616.
8.Jung KH, Yun JW, Kang KR, Lim JY, Le JH. 1989. Mathematical model for enzymatic production of fructooligosaccharides from sucrose. Enzyme Microbial Technol 11: 491–494.
9.Kaur, N., A. K. Gupta, 2002. Applications of inulin and oligofructose in health and nutrition. J. Biosci. 27, 703–714.4.
10.Kilian S, Kritzinger S, Rycroft C, Gibson G, du Preez J. 2002. The effects of the novel bifidogenic trisaccharide, neokestose, on the human colonic microbiota. World J Microbiol Biotechnol 18: 637–644.
11.Kohmoto T, Fukui F, Takaku H, Mitsuoka T. 1991. Bifidobacteria Microflora. Agric. Biol. Chen, 55: 2157-2159.
12.Kohmoto T, Kohmoto T, Fukui F, Akiba T, Suzuki S, Hirao A, Nakatsuru S, Kanisawa M. 1990. J. Food Hyg. Soc. Jpn. (in Japanese), 31: 394-403.
13.Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685.
14.Lim JS, Lee JH, Kang SW, Park SW, Kim SW. 2007. Studies on production and physical properties of neo-FOS produced by co-immobilized Penicillium citrinum and neo-fructosyltransferase. Eur Food Res Technol 225: 457–462.
15.Linde D, Macias I, Fernandez-Arrojo L, Plou FJ, Fernandez-Lobato M. 2009. Molecularand biochemical characterization of a β-fructofuranosidase from Xanthophyllomyces dendrorhous. Appl Environ Microbiol, 75: 1065–73.
16.Linde D, Rodriguez-Colinas B, Estevez M, Poveda A, Plou FJ, Fernandez-LobatoM. 2012. Analysis of neofructooligosaccharides production mediated by the extra-cellular β-fructofuranosidase from Xanthophyllomyces dendrorhous. Bioresource Technol, 109: 123–30.
17.Linde D., B. Rodriguez-Colinas, M. Estevez, A. Poveda, F. Plou, M. Lobato, 2012. Analysis of neofructooligosaccharides production mediated by the extracellular β-fructofuranosidase from Xanthophyllomyces dendrorhous. Bioresour. Technol. 17, 123–130
18.Marin D, Linde D, Lobato MF. 2006. Purification and biochemical characterization of an alpha-glucosidase from Xanthophyllomyces dendrorhous. Yeast 23:117–25
19.Monsan PM, Ouarne F. 2010. Oligosaccharides Derived from Sucrose. In The Prebiotics and Probiotics Science and Technology; Charalampopoulos D, Rastall A. Eds; Springer, 1: 293–336.
20.Monsan PM, Ouarne F. 2009. Oligosaccharides derived from sucrose. In: Charalampopoulos D, Rastall RA. Eds. Prebiotics and probiotics science and technology. Springer, 1: 135–161.
21.Mussattoa SI. Mancilha IM. 2007. Non-digestible oligosaccharides: a review. Carbohydr. Polym, 68: 587-597.
22.Ning Y, Wang J, Chen J, Yang N, Jin Z, Xu X. 2010. Production of neo-fructooligosaccharides using free-whole-cell biotransformation by Xanthophyllomyces dendrorhous. Bioresource Technol 101: 7472–7478.
23.Nadeau, D.A., 2000. The role of short-chain fructooligosaccharides in health and disease. Nutr. Clin. Care 3, 266–273.
24.Perez JA, Rodriguez J, Rodriguez L, Ruiz T. 1996. Cloning and sequence analysis of the invertase gene INV 1 from the yeast Pichia anomala. Curr Genet 29: 234–240.
25.Pool-Zobel B, van Loo J, Rowland I, Roberfroid MB, 2002. Experimental evidences on the potential of prebiotic fructans to reduce the risk of colon cancer. Brit J Nutr 87: S273–S281.
26.Sangeetha PT, Ramesh MN, Prapulla SG. Production of fructosyltransferase by Aspergillus oryzae CFR 202 in solid-state fermentationusing agricultural by-products. Appl Microbiol Biotechnol 65:530–537.(2004)
27.Sheu DC, Chang JY, Chen YJ, Lee CW. 2013a. Production of high-purity neofructooligosaccharides by culture of Xanthophyllomyces dendrorhous. Bioresource Technol, 132: 432–435.
28.Swennen, K., K. M. Ourtin, J. A. Elcour, , 2006. Non digestible oligosaccharides with prebiotics properties. Crit. Rev. Food Sci. Nutr. 46, 459–471.
29.Tokunaga, T., 2004. Novel physiological function of fructooligosaccharides. Biofactors 21, 89–94.
30.Tomomatsu H. 1994. Health effects of oligosaccharides. Food Technol 10: 61–65.
31.Van LJ. 2004. Prebiotics promote good health: The basis, the potential, and the emerging evidence. J Clin Gastroenterol, 38: S70–S75.
32.Wang Y. 2009. Prebiotics: present and future in food science and technology. Food Res Int 42:8-12.
參考網頁
1.juang.bst.ntu.edu.tw/files%20BCX/BCX%20S3.pdf
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔