(3.238.186.43) 您好!臺灣時間:2021/03/02 10:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪國棟
研究生(外文):Guo-Dong Hung
論文名稱:以電泳法孕核方式成長奈米晶鑽石薄膜於奈米碳片之研究
論文名稱(外文):Research on the nucleation way to grow nanocrystalline diamond films by electrophoresis on carbon nanoflakes
指導教授:施文欽
指導教授(外文):Wen-ching Shih
口試委員:施文欽
口試委員(外文):Wen-ching Shih
口試日期:2014-07-14
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:156
中文關鍵詞:電泳沉積法射頻磁控濺鍍微波電漿化學汽相沉積鑽石薄膜場發射
外文關鍵詞:electrophoresis depositionRF magnetron sputteringmicrowave plasma chemical vapor depositiondiamond filmfield emission
相關次數:
  • 被引用被引用:1
  • 點閱點閱:87
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,我們首先利用射頻磁控濺鍍系統成長奈米碳片於矽基板上,再對奈米碳片進行電泳奈米鑽石顆粒,電泳完後再利用微波電漿化學汽相沉積系統分別成長微米晶鑽石及超奈米晶鑽石薄膜(H2:0%、H2:6%),分別比較奈米碳片、微米晶鑽石、超奈米晶鑽石、奈米碳片上成長微米晶鑽石、奈米碳片上成長超奈米晶鑽石以及在微米晶鑽石上成長奈米碳片、超奈米晶鑽石成長奈米碳片其場發射特性及場發射特性生命週期之改善,並探討其影響機制。
奈米碳片電泳奈米鑽石顆粒後分別成長微米晶鑽石及超奈米鑽石薄膜經拉曼光譜分析得知,兩者分別都有微米晶鑽石、奈米晶鑽石的訊號,代表奈米碳片與鑽石薄膜已成功形成複合薄膜。
經場發射量測後得知奈米碳片複合微米晶鑽石起始電場可由4.54 V/μm,下降至3.56 V/μm,外加電場8.8 V/μm下其電流密度122.94μA/cm2提升至289.52μA/cm2;奈米碳片複合超奈米晶鑽石(H2:0%)起始電場並無下降,但其在外加電場8.8 V/μm下其電流密度114.26μA/cm2提升至245.47μA/cm2;奈米碳片複合超奈米晶鑽石(H2:6%)起始電場可由5.28 V/μm下降至4.32 V/μm,在外加電場8.8 V/μm下其電流密度32.94μA/cm2提升至496.29μA/cm2。

在場發射特性生命週期量測方面,奈米碳片複合微米晶鑽石其生命週期可由0.88 hrs提升至3 hrs;奈米碳片複合超奈米晶鑽石(H2:0%、H2:6%)其生命週期可由0.88 hrs提升至3 hrs。
During this research, we used the RF magnetron sputtering system to grow the carbon nanoflakes (CNFs) on Si substrate. Following by using the electrophoresis method to deposit the nanocrystallize diamond on the surface of the CNFs. Afterwards, the microcrystalline diamond (MCD) and ultra-nanocrystalline diamond (UNCD) were grown on the above prepared substrate.
In order to demonstrate the characteristics of the field emission as well as the improvement of the lifecycle, we compared the electron field emission properties of the CNFs, MCD, UNCD, MCD/CNF/Si, UNCD/CNF/Si, CNF/MCD/Si and CNF/UNCD/Si and explored its impact from the comparison.
From the analysis of the Raman spectra of the MCD/CNF/Si and UNCD/CNF/Si composite films, the signals of the MCD and UNCD were found.
From the field emission measurement, the turn-on field of the MCD/CNF/Si composite film was 3.56 V/μm, as compared to that of the MCD/Si film (4.54 V/μm). The current density of the MCD/CNF/Si composite film was 289.52 μA/cm2, as compared to that of the MCD/Si film (122.94 μA/cm2), when the applied electric field was 8.8V/μm.The turn-on field of the UNCD(0%H2)/CNF/Si composite film was not decreased as compared to that of the UNCD(0%H2)/Si film. The current density of the UNCD(0%H2)/CNF/Si composite film was 245.47 μA/cm2,as compared to that of the UNCD(0%H2)/Si film (112.94 μA/cm2) , when the applied electric field was 8.8 V/μm. The turn-on field of the UNCD(6%H2)/CNF/Si composite film was 4.32 V/μm,as compared to that of the UNCD(6%H2)/Si film(5.28 V/μm). The current density of the UNCD(6%H2)/CNF/Si composite film was 496.29 μA/cm2, as compared to that of the UNCD(6%H2)/CNF/Si composite film (32.94 μA/cm2), when the applied electric field was 8.8 V/ μm. The lifetime of field emission of the MCD/CNF/Si and UNCD/CNF/Si composite film was 3 hrs, as compared to that of the CNF/Si film (0.88 hr).
致謝I
摘要II
AbstractIV
目錄VI
圖目錄X
表目錄XV
第一章 緒論1
1.1 前言1
1.2鑽石的特性與應用4
1.2.1石墨的晶體結構4
1.2.2鑽石的晶體結構5
1.2.3 鑽石薄膜的特性6
1.2.4 鑽石薄膜的應用7
1.3奈米碳片12
1.4研究動機15
第二章 文獻回顧17
2.1鑽石薄膜的分類與成長17
2.1.1鑽石薄膜的分類17
2.1.2鑽石薄膜之合成方法22
2.1.3鑽石薄膜的成長前處理26
2.2電漿原理35
2.3濺鍍原理36
2.3.1濺鍍產率38
2.3.2射頻磁控濺鍍法39
2.4電泳沉積法46
2.4.1電泳沉積的發展46
2.4.2電泳沉積之原理49
2.4.3懸浮液種類51
2.4.4粒子電荷來源52
2.4.5膠體粒子之分散53
2.4.6定電壓與定電流之電泳沉積55
2.4.7影響電泳速度的因素59
2.4.8電泳沉積法之優點及應用62
2.5電子場發射理論63
第三章 研究方法與實驗步驟66
3.1 實驗流程66
3.2製程設備與方法67
3.2.1微波電漿化學汽相沉積系統67
3.2.2 射頻磁控濺鍍系統……………………………………72
3.3分析設備73
3.3.1電子場發射73
3.3.2顯微拉曼光譜74
3.3.3掃描式電子顯微鏡76
3.3.4 Life time 量測方法77
3.3.5霍爾電性測量77
第四章 研究結果與討論81
4.1不同製程溫度對CNF的場發射特性之影響81
4.2射頻功率對CNF的場發射特性之影響87
4.3 不同拉曼光源對鑽石薄膜之影響92
4.4奈米碳片&微米晶鑽石94
4.4.1微米晶鑽石成長於奈米碳片上(MCD/CNF/Si)94
4.4.2 奈米碳片成長於微米晶鑽石上(CNF/MCD/Si)98
4.5奈米碳片&超奈米晶鑽石(H2:0%)101
4.5.1超奈米晶鑽石成長於奈米碳片上(UNCD/CNF/Si)…101
4.5.2奈米碳片成長於超奈米晶鑽石上(CNF/UNCD/Si)105
4.6奈米碳片&超奈米晶鑽石(H2:6%)108
4.6.1超奈米晶鑽石成長於奈米碳片上108
4.6.2奈米碳片成長於超奈米晶鑽石上112
4.7單一薄膜(CNF、UNCD H2:0%、UNCD H2:6%、MCD)與複薄膜之穩定性比較116
4.7.1 CNF、UNCD H2:0%、UNCD H2:6%、MCD電流穩定性之比較116
4.7.2 CNF、UNCD H2:0%、CNF+UNCD H2:0%以及UNCD H2:0%+CNF電流穩定性之比較118
4.7.3 CNF、UNCD H2:6%、CNF+UNCD H2:6%以及UNCD H2:6%+CNF電流穩定性之比較120
4.7.4 CNF、MCD、CNF+MCD以及MCD+CNF電流穩定性之比較120
第五章 總結與未來展望125
參考文獻126
[1]J. E. Field,“The Properties of Diamonds”, Academic, London (1979).
[2]A. L. Lavoisier, Memoire Academie des Science, 564 (1882).
[3]P. W. Bridgman, “Synthetic Diamonds”, Scient. Am. 193, 42 (1955).
[4]J. C. Angus, H. A. Will and W. S. Stanko, “Growth of Diamond Seed Crystals by Vapor Deposition”, J. Appl. Phys. 39, 2915 (1968).
[5]B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces”, J. Cryst. Growth 52, 219 (1981).
[6]Ferrari, A. Carlo, Robertson, and John, “Raman spectroscopy of amorphous, nanostructured, diamond-like diamond, and nanodiamond”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 362, 2477 (2004).
[7]S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, ”Microstructure of ultrananocrystalline diamond films grown by microwave Ar-CH4 plasma chemical vapor deposition with or without added H2”, J. Appl. Phys. 90, 118 (2001).
[8]H. Liu, and David S. Dandy, “Diamond Chemical Vapor Deposition Nucleation and Early Growth Stages”, Noyes Publication, Park Ridge, New Jersey (1995).
[9]Jasprit Singh, McGraw-Hill, "Physics of Semiconductors and Their
Heterostructures ", New York (1993)
[10]S. M. Sze, John Wiley & Sons, "Physics of Semiconductor Devices, 2nd Edition", New York (1981)
[11]N. G. Shang, F. C. K. Au, X. M. Meng, C. S. Lee, I. Bello, S. T.
Lee,Uniform carbon nanoflake films and their field emissions”, Chemical Physics Letters, 358, pp. 187-191, (2002).
[12]J. Wang, M. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, B. C. Holloway, “Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition”, Carbon, 42, pp. 2867-2872, (2004).
[13]M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V.Shutthanandan, D. M. Manos, “A mechanism for carbon nanosheet formation”, Carbon, 45, pp. 2229-2234, (2007).
[14]W. P. Kang, J. L. Davidson, A. Wisitsora-at, D. V. Kerns, and S, Kerns, “Recent development of diamond microtip field emitter cathodes and devices”, J. Vac. Sci. Technol. B, 19(3), 936 (2001)
[15]A. Lamouri, Y. Wang, G. T. Mearini, I. L. Krainsky, J. A. Dayton Jr., and W. Mueller, “Electron emission observations from as‐grown and vacuum‐coated chemical vapor deposited diamond”, J. Vac. Sci. Technol. B 14, 2046 (1996).
[16]J. van der Weide, Z. Zhang, P. K. Baumann, M. G. Wensell, J. Bernholc, and R. J. Nemanich, “Negative-electron-affinity effects on the diamond (100) surface”, Phy. Rev. B 50, 5803 (1994).
[17]M. W. Geis, N. N. Efremow, J. D. Woodhouse, M. D. Mcaleese, M. Marchywka, D. G. Socker, and J. F. Hochedez, “Diamond cold cathode”, IEEE Electr. Dev. Lett. 12, 456 (1991).
[18]W. P. Kang, J. L. Davidson, A. Wisitsora-at, D. V. Kerns, and S. Kerns, ”Recent development of diamond microtip field emitter cathodes and devices”, J. Vac. Sci. Technol. B 19, 936 (2001).
[19]A. T. Sowers, B. L. Ward, S. L. English, and R. J. Nemanich, “Field emission properties of nitrogen-doped diamond films”, Jpn. J. Appl. Phys. 86, 3973 (1999).
[20]P. T. Joseph, N. H. Tai, H. Niu, U. A. Palnitkar, W. F. Pong, H.F. Cheng, and I. N. Lin, “Structural modification and enhanced field emission on ultrananocrystalline diamond films by nitrogen ion implantation”, Diamond Relat. Mater. 17, 1812 (2008).
[21]Y. C. Lee, S. J. Lin, I. N. Lin, and H. F. Cheng, “Effect of boron doping on the electron-field-emission properties of nanodiamond films”, J. Appl. Phys. 97, 054310-1 (2005).
[22]C. F. Shih, K. S. Liu, and I. N. Lin, “Effect of nitrogen doping on the electron field emission properties of chemical vapor deposited diamond films”, Diamond Relat. Mater. 9, 1591 (2000).
[23]Y. H. Chen, C. T. Hu, and I. N. Lin, “Defect structure and electron field-emission properties of boron-doped diamond films”, Appl. Phys. Lett. 75, 2857 (1999).
[24]V. I. Polyakov, N. M. Rossukanyi, A. I. Rukovishnikov, S. M. Pimenov, A. V. Karabutov, and V. I. Konov, “Effects of post-growth treatment and coating with ultrathin metal layers on the band bending and field electron emission of diamond films”, J. Appl. Phys. 84, 2882 (1998).
[25]I. N. Lin, Y. H. Chen, and H. F. Cheng, “Modification of emission properties of diamond films due to surface treatment process”, Diamond Relat. Mater. 9, 1574 (2000).
[26]C. Y. Wang, F. L. Zhang, T. C. Kuang, and C. L. Chen,“Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO3 and KNO3,”, Thin Solid Films 496 (2), 698 (2006).
[27]W. Zhu, “Vacuum Microelectronics,” John Wiley & Sons (2001).
[28]A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding, “Ultrananocrystalline diamond thin films for MEMS and moving
mechanical assembly devices” Diamond and Related Materials 10,(2001).
[29]Ferrari, Andrea Carlo, Robertson, and John, “Raman spectroscopy of morphous, nanostructured, diamond-like carbon, and nanodiamond,” Philosophical ransactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 362 ,
2477 (2004).
[30]M. Veres, S. Toth, and M. Koos, “Grain boundary fine structure of ultrananocrystalline diamond thin films measured by Raman scattering,”Applied Physics Letters, 91 031913-1- 031913-3 (2007).
[31]M. Veres, S. Toth, E. Perevedentseva, A.Karmenyan, and M. Koos, “Raman spectroscopy of UNCD grain boundaries,”Volume . ISBN 978-1-4020-9915-1. Springer Netherlands, 115 (2009).
[32]A. C. Ferrari and J. Robertson , “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond,” Physical Review B 63 ,121405-1-121405-4 (2001).
[33]James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, “ Bonding structure in nitrogen doped ultrananocrystalline diamond,” Journal of Applied Physics 93, 5606-5612 (2003).
[34]H. Yamada, A. Chayahara, Y. Mokuno, Y. Horino, S. Shikata, "Numerical analyses of a microwave plasma chemical vapor deposition reactor for thick diamond syntheses", Diamond and Related Material (2006).
[35]D. M. Bhusari, J. R. Yang, T. Y. Wang, and K. H. Chen, “Novel two stage method for growth of highly transparent nano-crystalline diamond films”, Materials Letter 36, 279 (1998).
[36]A. T. Sowers, B. L. Ward, S. L. Englih and R. J. Nemanich, “Field emission properties of nitrogen-doped diamond films”, J. Appl. Phys. 86, 3937 (1999).
[37]A. Hatta, K. Kadota, Y. Mori, T. Ito, T. Sasake, and A. Hiraki, S. Okada, "Pulse modulated electron cyclotron resonance plasma for chemical vapor deposition of diamond films." Applied Physics Letters 66 (13), (1995).
[38]S. Iijima, Y. Aikawa, and K. Baba, “Early formation of chemical vapor deposition diamond films”, Appl. Phys. Lett. 57 (25), 2646 (1990).
[39]N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, and A. Hiraki, “Synthesis and structural study of nano/micro diamond overlayer films”, J. Cryst. Growth 242 (3-4), 362 (2002).
[40]H. Liu and D. S. Dandy, “Diamond chemical vapor deposition: Nucleation and Early Growth Stages”, Noyes, (1995).
[41]Z. Li, L. Wang, T. Suzuki, and Pirouz, “Orientation relationship between chemical vapor deposited diamond and graphite substrates”, J. Appl. Phys. 73(2), 711 (1993).
[42]D. N. Belton, S. J. Harris, S. J. Schmieg, A. M. Wiener, and T. A. Perry, “In situ characteristic of diamond nucleation and growth”, Appl. Phys. Lett. 54 (5), 416 (1989).
[43]N. Jiang, B. W. Sun, Z. Zhang, and Z. Lin, “Nucleation and initial growth of diamond film on Si substrate”, Journal of Materials Research 9 (10), 2695 (1994).
[44]W. L. Wang, K. J. Liao, L. Fang, J. Esteve, and M. C. Polo, “Analysis of diamond nucleation on molybdenum by biased hot filament chemical vapor deposition”, Diamond Relat. Mater. 10 (3-7), 383 (2001).
[45]B. R. Stoner, G.-H. M. Ma, S. D. Wolter, and J. T. Glass, “ Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy”, Phy. Rev. B 45 (19), 11067 (1992).
[46]J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, “Investigation of bias enhanced nucleation of diamond on silicon”, J. Appl. Phys. 79 (8), 4388 (1996).
[47]P. Reinke and P. Oelhafen, “Photoelectron spectroscopic investigation of the bias-enhanced nucleation of polycrystalline diamond films”, Phy. Rev. B 56 (4), 2183 (1997).
[48]R. Stockel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, “Growth of diamond on silicon during the bias pretreatment in chemical vapor deposition of polycrystalline diamond films”, J. Appl. Phys. 79, 768 (1996).
[49]R. Stockel, M. Stammler, K. Janischowsky, and L. Ley, “Diamond nucleation under bias conditions”, J. Appl. Phys. 83, 531 (1998).
[50]J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, “Mechanism of bias-enhanced nucleation of diamond on Si”, Appl. Phys. Lett. 66 (24), 3287 (1995).
[51]S. P. McGinnis, M. A. Kelly, and S. B. Hagstrom, “Evidence of an energetic ion bombardment mechanism for bias-enhanced nucleation of diamond”, Appl. Phys. Lett. 66 (23), 3117 (1995).
[52]L. J. Huang, I. Bello, W. M. Lau, S. T. Lee, P. A. Stevens, and B. D. DeVries, “Synchrotron radiation x-ray absorption of ion bombardment induced defects on diamond(100)”, J. Appl. Phys. 76 (11), 7483 (1994).
[53]S. Barrat, S. Saada, I. Dieguez, and E, Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step”, J. Appl. Phys. 84 (4), 1870 (1998).
[54]D. Pradhan, L. J. Chen, Y. C. Lee, C. Y. Lee, N. H. Tai, and I. N. Lin, “Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature”, Diamond Relat. Mater. 15, 1779 (2006).
[55]B. Ferrari, R. Moreno, P. Sarkar, P. S. Nichilson, “Electrophoretic Deposition of MgO from Organic Suspension”, J. Eur. Ceram. Soc., 20, pp. 99-106, (2000).
[56]R. Boccaccini, Johann Cho, “Electrophoretic deposition of carbon nanotubes”, Carbon, 44, pp. 3149-3160, (2006).
[57]李建武等合編“藝軒圖書出版社: 生物化學實驗原理和法” pp. 114-146, (1999).
[58]O. Omer, V. D. Biest, J. L. Vandeperre, “Electrophoretic deposition of materials”, Annu. Rev. Mater. Sci., 29, pp. 327-352, (1999).
[59]Zhitomirsky, “Electrophoretic and electrolytic deposition of ceramic coatings on carbon fibers”, J. Eur. Ceram. Soc., 18, pp. 849-856, (1998).
[60]J. H. Jean, “Electrophoretic deposition of Al2O3-SiC composite”, Materials Chemstry and Physics, 40, pp. 285-290, (1995).
[61]R. N. Basu, M. J. Mayo, C. A. Randall, “Free standing sintered ceramic films from electrophoretic deposition”, Jpn. J. Appl. Phys., 38, pp. 6462-6465, (1999).
[62]R. W. Powers, “The electrophoretic forming of beta-alumina ceramic”, J. Electrochem. Soc., 122, pp. 490-500, (1975).
[63]I. Zhitomirsky, L. Gal-Or, “Formation of hollow fibers by electrophoretic depsition”, Materials Letters, 38, pp. 10-17, (1999).
[64]F. Harbach, H. Nienburg, “Homegeneus functional ceramic components through electrophoretic deposition from stable colloidal suspensions”, J. Eur. Ceram. Soc., 18, pp. 675-683 & pp. 685-692, (1998).
[65]黃士瑋,“使用電泳沉積研究加工改善放電微孔精度之研究”, 中央大學機械工程研究所碩士論文, (2003).
[66]陳昱豪,“利用電泳沉積法製作三極式場發射元件”, 大同大學 光電工程研究所碩士論文, (2011).
[67]O. O. Van der Biest, L. J. Vandeperre, “Electrophoretic deposition of materials” ,Annu. Rev. Mater. Sci., 29, pp. 327-352, (1999).
[68]J. A. Lewis, “Colloidal processing of ceramics”, J. Am. Ceram. Soc. 83, pp. 201-218, (2000). & 陳盈君,“奈米二氧化鈦電泳沉積及 其性質”, 國立成功大學, 材料科學及工程學系碩士論文, (2004).
[69]A. Sussman, T. J. Ward, “Electrophoretic deposition of coatings from glass-isopropanol slurries”, RCA Review, 42, pp. 178-197, (1981).
[70]張樹政, “中國大百科全書: 化學-電泳”, 中國大百科全書出 版社, (1987).
[71]劉佳政,“奈米二氧化鈦電泳沉積及其性質”, 國立成功大學材 料科學及工程學系碩士論文, (2003).
[72]B. Chapman, “Glow Discharge Process”, John Wiley&Sons, New York ,p.49 (1980).
[73]A. Grill, Cold Plasma in Materials Fabrication,IEEE Press, New York, (1994).
[74]D. S. Richerby, and A. Matthews , “Advanced Surface Coatings: A Handbook of Surface Engineering”,Chapman and Hall, New York, p.92 (1991).
[75]M. Ohring, “The Materials Science of Thin Films Academic Press” (1992).
[76]W.Jacob,W.Moller,’’On the structure of thin hydrocarbon films,”Applied Physics Letters, 63, pp.1771-1773(1993).
[77]王全盛,“微波電漿法合成鑽石薄膜機制探討及場發射特性之研究”,淡江大學物理學系博士班博士論文, (2010).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔