跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/16 03:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張治傑
研究生(外文):Chih-chieh Chang
論文名稱:網印奈米碳管陰極結構場發射平面光源
論文名稱(外文):STUDY OF FIELD EMISSION PLANAR LIGHT SOURCE BY SCREEN PRINTING METHOD WITH CARBON NANOTUBE CATHODE STRUCTURE
指導教授:蔡五湖
指導教授(外文):Woo-hu Tsai
口試委員:蔡五湖
口試委員(外文):Woo-hu Tsai
口試日期:2014-07-21
學位類別:博士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:142
中文關鍵詞:網印技術奈米碳管平面光源場發射
外文關鍵詞:Carbon nanotubePlanar light sourceField emissionScreen printing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用網印奈米碳管陰極結構完成場發射平面光源,並且成功利用三極式結構、反射式金屬凹槽陽極、螺旋發射端圖形和跳躍-漏斗層結構有系統的研究來改善場發射特性。
在三極式的部份,我們採用薄膜技術形成閘極與奈米碳管底層電極並利用簡易製程步驟完成元件備製,研究發現可藉由閘極上的施加電壓控制電子束的路徑和密度,可以提升整體的均勻性以及螢光粉的發光壽命。
與典型二極式結構比較,我們證明反射式金屬陽極和螺旋發射端圖形具有傑出的場發射特性,例如:可維持高場發射電流、避免電弧放電、高亮度與良好的均勻性。實驗結果顯示,反射式金屬陽極之亮度可達11500 nits而螺旋陰極結構之亮度更高達21700 nits。
最後,從我們的研究結果顯示,在跳躍-漏斗層結構中加入上間隔器與下間隔器會影響場發射特性。利用玻璃製作跳躍-漏斗層結構加至場發射平面光源中,可明顯的提昇螢光粉發光的亮度與均勻性。論文中我們也利用FlexPDE軟體對我們的結構進行電場分布與電子束路徑的模擬並與實驗結果進行比較。
In this thesis, the field emission planar light source was fabricated by screen printing method with carbon nanotube cathode structure. And a triode cathode structure, reflective metal groove anode, spiral emitter pattern, as well as a hop-flu structure have been investigated systematically to improve the field emission properties successfully.
On the triode structure, a thin-film technology has been applied to simplify the processing of the cathode fabrication with the gates and electrodes layer deposition on a triode-type panel. We could control the path of electron beam and its density by changing the gate voltage. The results show that at an appropriate gate voltage the triode structure can improve the luminance uniformity and the emission lifetime of the phosphor layer coated on the anode.
In comparison with a typical diode structure, we also demonstrated that the reflective metal anode and spiral emitter pattern possess excellent field emission characteristics, such as sustaining high-field emission current, high illumination, good radiation uniformity and no unexpected arcing. The luminance of the reflective metal groove anode is about 11500 nits, while the luminance is about 21700 nits observed from the spiral emitter pattern.
Finally, we have introduced the hop-flu structure to the field emission planar light source for improving the brightness and uniformity. We also demonstrated that the field emission properties can be modified substantially by inserting both an upper spacer and a lower spacer into the hop-flu structure. The FlexPDE software is applied to simulate both the electric field distributions and the paths of electron beam for the comparison with the experimental results.
致謝i
中文摘要ii
ABSTRACTiii
目錄v
圖目錄viii
表目錄viii
第一章 簡介1
1.1 場發射簡介1
1.2 奈米碳管簡介17
1.3 論文簡介20
第二章 場發射理論與機制22
2.1 場發射理論22
2.2 熱發射理論27
2.3 螢光粉發光機制29
2.4 光度測定31
2.5 螢光材料33
第三章 典型二極式結構製作與量測38
3.1 元件製程38
3.1.1 陰極製作40
3.1.2 陽極製作50
3.1.3 陰極後處理50
3.2 電性與亮度量測53
第四章 結果與討論57
4.1 三極式場發射平面光源59
4.1.1 二極式線狀與各式點狀陰極圖形場發射特性59
4.1.2 三極式點狀陰極圖形場發射特性65
4.2 金屬凹槽反射式場發射光源73
4.2.1 金屬凹槽反射式光源之陰極結構73
4.2.2 金屬凹槽反射式光源之陽極結構78
4.2.3 濺鍍鋁膜於螢光粉層之場發射特性88
4.3 螺旋陰極圖形場發射平面光源92
4.3.1 螺旋與各種陰極圖形場發射特性92
4.3.2 螺旋陰極圖形場發射特性98
4.3.3 反射式陽極之螺旋陰極圖形場發射特性104
4.3.4 螢光粉對場發射特性與亮度之影響107
4.4 躍層-漏斗層結構場發射光源111
4.4.1 圓形與環形奈米碳管圖形之場發射特性比較111
4.4.2 躍層-漏斗層結構之場發射特性比較114
第五章 結論與未來展望124
參考文獻127
附錄:發表之論文141
[1]R. H. Fowler, L. Nordheim, “Electron Emission in Intense Electric Fields”, Mathematical and Physical A 119 (1928) 173-181.
[2]C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, “Physical properties of thinfilm field emission cathodes with molybdenum cones”, J. Appl. Phys. 47 (1976) 5248-5263.
[3]R. Meyer, ”Recent Development on "Microtips" Display at LETI” , IVMC’91 (1991) 6-9.
[4]黃宣宜, “場發射顯示器技術現況與發展”, 光連雙月刊 39 (2002) 57-64.
[5]W. I. Milne, K. B. K. Teo, M. Mann, I. Y. Y. Bu, G. A. J. Amaratunga, N. De Jonge, M. Allioux, J. T. Oostveen, P. Legagneux, E. Minoux, L. Gangloff, L. Hudanski, J. P. Schnell, L. D. Dieumegard, F. Peauger, T. Wells, and M. El-Gomati, “Carbon nanotubes as electron sources”, Physica Status Solidi a-Applications and Materials Science 203 (2006) 1058-1063.
[6]W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display”, Applied Physics Letters 75 (1999) 3129-3131.
[7]C. C. Lee, B. N. Lin, M. C. Hsiao, Y. Y. Chang, W. Y. Lin and L. Y. Jiang, “Development of CNT-FED by Printing Method”, SID’05 Digest (2005) 1716-1719.
[8]J. J. W. M. Rosink, F. A. van Abeelen and N. C. van der Vaart, “Ion Traps for the Hopping Electron Cathode”, EURODISPLAY 2002 (2002) 841-844.
[9]N. C. van der Vaart, G. G. P. van Gorkom, M. G. H. Hiddink, E. M. J. Niessen, A. J. J. Rademakers, J. J. W. M. Rosink, R. Winters, S. T. de Zwart, W. A. J. A. van der Poel and R. van der Wilk, “A Novel Cathode for CRTs based on Hopping Electron Transport”, SID’02 Digest (2002) 1392-1395.
[10]N. C. van der Vaart and H. A. Wierenga, “A Novel Electron Source for CRTs”, Information display 6(2) (2002) 14-17.
[11]H. M. Visser, J. J. W. M. Rosink, M. F. Gillies, N. C. van der Vaart, W. A. J. A. van der Poel, E. C. Cosman, “Field Emission Display Architecture based on Hopping Electron Transport”, SID’03 Digest (2003) 806-809.
[12]X. Zhong, H. Zhao, W. Lei, X. Zhang, H. Yin, W. van der Poel and D. den Engelsen, “Numerical study of the electron and ion trajectories in HOPFEDs”, Journal of the SID 12(4) (2004) 483-488.
[13]D. den Engelsen and K. Kortekaas, “Hopping-Electron Transport in a Field-Emission Display”, Information display 10(4) (2004) 22-26.
[14]W. Lei, X. Zhang, X. Zhou, Z. Zhu, C. Lou and H. Zhao, “Characteristics of a cold cathode electron source combined with secondary electron emission in a FED”, Applied Surface Science 251 (2005) 170-176.
[15]L. Min, Z. Xiaobing, L. Wei, Z. Hongping and W. Baoping, “Transverse energy distribution analysis in a field emission element with an insulator funnel”, Nuclear Instruments and Methods in Physics Research B 234 (2005) 210-218.
[16]L. Zhang, X. Zhang, W. Lei, X. Su and C. Li, “Simulation Secondary Electron Emission of a Hopped FED”, IVNC’06 (2006) 461-462.
[17]K. Chu, W. Lei, X. Zhang, Y. Di, J. Chen and X. Yang, “Study of a Normal-gate CNT-FED Using HOP Glass”, IVNC’06 (2006) 437-438.
[18]H. E. Bishop, “The Role of Hop and Flue Plates in Flat Panel Displays”, ISDEIV’06 (2006) 877-880.
[19]Web [http://www.researchinchina.com/Htmls/Report/2008/1583.html].
[20]D. J. Leea, S. I. Moona, Y. H. Leeb, J. E. Yooc, J. H. Parkc, J. Jangd and B. K. Jua, “The vacuum packaging of a flat lamp using thermally grown carbon nano tubes”, Vacuum 74 (2004) 105-111.
[21]Y. C. Kim, K. H. Sohn, Y. M. Cho, K. J. Kwon, W. K. Cho, N. S. Kang and E. H. Yoo, “Photo-sensitive Carbon Nanotubes Paste for Electron Field Emission”, IDMC’05 (2005) 28-30.
[22]M. C. Hsiao, Y. Y. Chang, W. Y. Lin, L. Y. Jiang, M. H. Lin, L. H. Chan, Y. C. Jiang, T. H. Tsou, and C. C. Lee, “Novel Structure of Carbon Nanotubes Backlight Unit”, SID’06 Digest (2006) 71-73.
[23]Y. C. Choi, J. W. Lee, S. K. Lee, M. S. Kang, C. S. Lee, K. W. Jung, J. H. Lim, J. W. Moon, M. I. Hwang, I. H. Kim, Y. H. Kim, B. G. Lee, H. R. Seon, S. J. Lee, J. H. Park, Y. C. Kim and H. S. Kim, “The high contrast ratio and fast response time of a liquid crystal display lit by a carbon nanotube field emission backlight unit”, Nanotechnology 19 (2008) 235306(1-5).
[24]Y. C. Kim, H. S. Kang, E. Cho, D. Y. Kim, D. S. Chung, I. H. Kim, I. T. Han and J. M. Kim, “Building a backlight unit with lateral gate structure based on carbon nanotube field emitters”, Nanotechnology 20 (2009) 095204(1-7).
[25]V. P. Verma, S. Das, I. Lahiri and W. Choi, “Large-area graphene on polymer film for flexible and transparent anode”, Appl. Phys. Lett. 96 (2010) 203108(1-3)
[26]H. Murakami, M. Hirakawa, C. Tanaka and H. Yamakawa, “Field emission from well-aligned, patterned, carbon nanotube emitters”, Appl. Phys. Lett. 76 (2000) 1776-1777.
[27]M. Yu. Leshukov, A. S. Baturin, N. N. Chadaev and E. P. Sheshin, “Characterizations of light sources with carbon fiber cathodes”, Applied Surface Science 215 (2003) 260-264.
[28]A. S. Leychenko, M. Yu. Leshukov, N. N. Chadaev and E. P. Sheshin, “Effective Lamp for LCD-Backlightning with the Field Emission Cathode”, IVNC’06 (2006) 383-384.
[29]J. M. Bonard, T. Stockli, O. Noury and A. Chatelain, “Field emission from cylindrical carbon nanotube cathodes Possibilities for luminescent tubes”, Appl. Phys. Lett. 78 (2001) 2775-2777.
[30]M. Croci, I. Arfaoui, T. Stockli, A. Chatelain and J. M. Bonard, “A fully sealed luminescent tube based on carbon nanotube field emission”, Microelectronics Journal 35 (2004) 329-336.
[31]E. S. Janga, J. C. Goaka, H. S. Leea, S. H. Leea, J. H. Hanb, C. S. Leeb, J. H. Sokc, Y. H. Seoa, K. S. Parka and N. S. Lee, “Light radiation through a transparent cathode plate with single-walled carbon nanotube field emitters”, Applied Surface Science 256 (2010) 6838-6842.
[32]K. Nishimura, H. Sasaoka, H. X. Wang and N. Jiang, “Fabrication of field emission lamps using nanocrystalline diamond on carbon nanowall films”, IVNC’12 (2012) P2-25.
[33]H. C. Wu, M. J. Youh, W. H. Lin, C. L. Tseng, Y. M. Juan, M. H. Chuang, Y. Y. Li and A. Sakoda, “Fabrication of double-sided field-emission light source using a mixture of carbon nanotubes and phosphor sandwiched between two electrode layers”, Carbon 50 (2012) 4781-4786.
[34]S. J. Chen, M. J. Youh, L. H. Huang, C. L. Tseng, C. Y. Hsu, and Y. Y. Li, “Fabrication of Double-Sided Field-Emission Light Source Using Urchin-Like α-Fe2O3 Microparticles”, Electron Devices 61(3) (2014) 820-824.
[35]S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354 (1991) 56-58.
[36]M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H. W. Kroto and A. Sarkar, “Pyrolytic carbon nanotubes from vapor-grown carbon fibers”, Carbon 33(7) (1995) 873-881.
[37]S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature 363 (1993) 603-605.
[38]C. H. Tsai1, S. P. Chen, G. W. Hsieh, C. C. Liang, W. C. Lin, S. J. Tseng and C. H. Tsai, “Selective carbon nanotube growth on silicon tips with the soft electrostatic force bonding and catalyst transfer concepts”, Nanotechnology 16(5) (2005) S296-S299.
[39]A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert and R. E. Smalley, “Unraveling Nanotubes: Field Emission from an Atomic Wire”, Science 269 (1995) 1550-1553.
[40]W. A. deHerr, A. Chatelain, and D. Ugarte, “A Carbon Nanotube Field-Emission Electron Source”, Science 270 (1995) 1179-1180.
[41]P. G. Collins and A. Zettl, “Unique characteristics of cold cathode carbon-nanotube-matrix field emitters”, Phys. Rev. B 55 (1997) 9391-9399.
[42]S. Fan, W. Liang, H. Dang, N. Franklin, T. Tombler, M. Chapline and H. Dai, “Carbon nanotube arrays on silicon substrates and their possible application”, Physica E 8 (2000) 179-183.
[43]成會明, 奈米碳管 (五南, 臺北市, 2004).
[44]J. M. Bonard, F. Maier, T. Stockli, A. Chatelain, W. A de Heer, J. P. Salvetat and L. Forro, “Field emission properties of multiwalled carbon nanotubes”, Ultramicroscopy 73 (1998) 7-15.
[45]佟鈺, 劉暢, 侯鵬翔等, “流動催化劑法制備多壁納米碳管場致發射材料”, 第八屆中國場致發射與真空微電子學學術會議 (2001) 102-108.
[46]Y. Tong, C. Liu, P. X. Hou, H. M. Cheng, N. S. Xu and J. Chen, “Field emission from aligned multi-walled carbon nanotubes”, Physica B 323 (2002) 156-157.
[47]J. M. Bonard, J. P. Salvetat, T. Stockli, L. Forro and A. Chatelain, “Field emission from carbon nanotubes_ perspectives for applications and clues to the emission mechanism”, Appl. Phys. A 69 (1999) 245-254.
[48]Z. W. Pan, F. C. K. Au, H. L. Lai, W. Y. Zhou, L. F. Sun, Z. Q. Liu, D. S. Tang, C. S. Lee, S. T. Lee and S. S. Xie, “Very Low-Field Emission from Aligned and Opened Carbon Nanotube Arrays”, J. Phys Chem. B 326 (2001) 1519-1522.
[49]C. J. Lee, J. Park, S. Y. Kang, J. H. Lee, “Growth and field electron emission of vertically aligned multiwalled carbon nanotubes”, Chem. Phys. Lett. 326 (2000) 175-180.
[50]X. Xu and G. R. Brandes, “A method for fabricating large-area, patterned, carbon nanotube field emitters”, Appl. Phys. Lett. 74 (1999) 2549-2551.
[51]S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties”, Science 283 (1999) 512-514.
[52]T. W. Ebbesen and P. M. Ajayan, “Large-scale synthesis of carbon nanotubes”, Nature 358 (1992) 220-222.
[53]M. Ishigami, J. Cumings, A. Zettl and S. Chen, “A simple method for the continuous production of carbon nanotubes”, Chem. Phys. Lett. 319 (2000) 457-459.
[54]T. Guo, P. Nikolaev, A. Thess, D. T. Colbert and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization”, Chen, Chem. Phys. Lett. 243 (1995) 49-54.
[55]T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert and R. E. Smalley, “Self-Assembly of Tubular Fullerenes”, J. Phys. Chem. 99 (1995) 10694-10697.
[56]A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer and R. E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes”, Science 273 (1996) 483-487.
[57]Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal and P. N. Provencio, “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass”, Science 282 (1998) 1105-1107.
[58]W. Z. Li, S. S. Xie, L. X. Qain, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao and G. Wang, “Large-Scale Synthesis of Aligned Carbon Nanotubes”, Science 274 (1996) 1701-1703.
[59]S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov and J. B. Nagy, “A Formation Mechanism for Catalytically Grown Helix-Shaped Graphite Nanotubes”, Science 265 (1994) 635-639.
[60]H. F. Wei, G. H. Hsiue, C. Y. Liu and K. F. Chen, “Enhancement of Dimension Uniformity of Wet-Etched Thick Insulator Holes in Triode Carbon Nanotube Field-Emission Display Devices”, Jpn. J. Appl. Phys. 47 (2008) 8998-9002.
[61]K. Shibayama, M. Hiraki, Y. Saitou and A. Hosono, “Improvement of Lighting Uniformity in Field Emission Display with Carbon Nano-Tube Cathodes”, Jpn. J. Appl. Phys. 42 (2003) 3698-3701.
[62]A. A. Talin, K. A. Dean and J. E. Jaskie, “Field emission display: a critical review”, Solid-State Electronics 45 (2001) 963-976.
[63]Y. Saito, K. Hamaguchi, R. Mizushima, S. Uemura, T. Nagasako, J. Yotani and T. Shimojo, “Field emission from carbon nanotubes and its application to cathode ray tube lighting elements”, Applied Surface Science 146 (1999) 305-311.
[64]Y. Di, W. Lei, X. Zhang, Y. Cui and Q. Wang, “A New Triode Structure With a Carbon Nanotube Cathode”, Electron Devices 54 (2007) 3079-3084.
[65]W. Fu, P. Liu, J. Tang, L. Liu and S. Fan, “Spherical field emission cathode based on carbon nanotube paste and its application in luminescent bulbs”, J. Vac. Sci. Technol. B 26 (2008) 1404-1406.
[66]C. S. Li, S. H. Su, H. Y. Chi, Z. B. Li and M. Yokoyama, “Enhancing the lifetime of field-emission organic light-emitting diodes using a cavity structure”, Thin Solid Films 517 (2009) 5330-5332.
[67]Y. A. Zhang, J. Y. Lin, C. X. Wu, F. S. Li and T. L. Guo, “Stable field emission from planar-gate electron source with MWNTs by electrophoretic deposition”, Solid-State Electronics 67 (2012) 6-10.
[68]G. Z. Yue, Q. Qiu, Bo Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu and O. Zhou, “Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode”, Appl. Phys. Lett. 81 (2002) 355-357.
[69]J. Zhang, G. Yang, Y. Cheng, B. Gao, Q. Qiu, Y. Z. Lee, J. P. Lu and O. Zhou, “Stationary scanning x-ray source based on carbon nanotube field emitters”, Appl. Phys. Lett. 86 (2005) 184104(1-3).
[70]C. M. Posada, C. H. Castano, E. J. Grant and H. K. Lee, “Simulation of the electron field emission characteristics of a flat panel x-ray source”, J. Vac. Sci. Technol. B 30 (2012) 022201(1-9).
[71]H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert and R. E. Smalley, “Nanotubes as nanoprobes in scanning probe microscopy”, Nature 384 (1996) 147-150.
[72]J. H. Hafner, C. L. Cheung and C. M. Lieber, “Growth of nanotubes for probe microscopy tips”, Nature 398 (1999) 761-762.
[73]H. M. Cheng, Q. H. Yang and C. Liu, “Hydrogen storage in carbon nanotubes”, Carbon 39 (2001) 1447-1454.
[74]R. Signorelli, D. C. Ku, J. G. Kassakian and J. E. Schindall, “Electrochemical Double-Layer Capacitors Using Carbon Nanotube Electrode Structures”, Proceedings of the IEEE 97(11) (2009) 1837-1847.
[75]G. Fiorentino, S. Vollebregt, F.D. Tichelaar, R. Ishihara and P. M. Sarro, “3D Solid-State Supercapacitors Obtained by ALD Coating of High-Density Carbon Nanotubes Bundles”, MEMS’14 (2014) 342-345.
[76]R.V. Latham, High voltage vacuum insulation: the physical basis (Academic Press Inc, New York, 1981).
[77]J. M. Bonard, M. Croci, I. Arfaoui, O. Noury, D. Sarangi and A. Chatelain, “Can we reliably estimate the emission field and field enhancement factor of carbon nanotube film field emitters?”, Dianmond and Related Material 11 (2002) 763-768.
[78]M. Sveningsson , R. E. Morjan , O. A. Nerushev, Y. Sato, J. Backstrom , E. E. B. Campbell and F. Rohmund, “Raman spectroscopy and field-emission properties of CVD-grown carbon-nanotube films”, Appl. Phys. A 73 (2001) 409-418.
[79]Z. L. Wang, R. P. Gao, W. A. de Heer and P. Poncharal, “In situ imaging of field emission from individual carbon nanotubes and their structural damage”, Appl. Phys. Lett. 80 (2002) 856-858.
[80]曹佑民, 碩士論文, 國立台灣師範大學物理學研究所, 2002.
[81]C. H. Seager, “Grain boundary recombination: Theory and experiment in silicon”, J. Appl. Phys. 52 (1981) 3960-3968.
[82]陳昱霖, 碩士論文, 國立成功大學材料科學及工程系, 2001.
[83]陳怡冰, 碩士論文, 國立交通大學應用化學系, 2001.
[84]L. Ozawa, Cathodoluminescence: Theory and Applications (Kodansha, Japan, 1990)
[85]M. Itoh and L. Ozawa, “Cathodoluminescent phosphors”, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 102 (2006) 12-42.
[86]T. J. Vink, M. Gillies, J. C. Kriege, and H. W. J. J. van de Laar, “Enhanced field emission from printed carbon nanotubes by mechanical surface modification”, Appl. Phys. Lett. 83 (2003) 3552-3554.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top