跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/21 17:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳彥達
研究生(外文):Yan-Da Chen
論文名稱:利用三元化合物交替成長法成長硒化銅鋅錫薄膜
論文名稱(外文):Growth and Characterization of Cu2ZnSnSe4 Thin Films by Ternary Compound Alternating Method
指導教授:楊祝壽
指導教授(外文):Chu-Shou Yang
口試委員:楊祝壽
口試委員(外文):Chu-Shou Yang
口試日期:2014-07-21
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:62
中文關鍵詞:交替成長三元化合物硒化銅鋅錫硒化銅銦鎵硒化退火
外文關鍵詞:Cu2ZnSnSe4CuInGaSe2CZTSeCIGSTernary CompoundAlternating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在硒化銅銦鎵中,利用前驅物來進行三階段製程的方式,已經行之有年,而為了能夠得到更好品質以及更有效率地的到硒化銅鋅錫,我們參考了硒化銅銦鎵的三階段製程方式,設計出三元化合物交替成長法來進行我們的實驗。
利用電將輔助分子束磊晶系統成功的成長出硒化銅鋅錫薄膜,成長的過程中包括低溫交替成長兩種三元化合物的前驅物,接著進行退火的程序,這些製程皆在相同的腔體中完成。首先將前驅物硒化銅錫和硒化銅鋅交替成長,並且將成長溫度維持在 150度。藉由低溫成長的方式來穩定控制未退火前的硒化銅鋅錫的組成比例。在前驅物交替成長的過程中,採用不同順序的成長過程也會呈現不同的組成比例。在最後的退火過程中,我們將討論退火溫度的不同對硒化銅鋅錫磊晶層的影響,並且從物性與光性的角度出發,藉由X射線繞射儀和拉曼散射了解硒化銅鋅晶體的結構。而當退火溫度於 450度時,從拉曼散射中,可以清楚地觀察到 171、193、231 cm-1 這三個主要的峰值,同時配合X射線繞射儀的檢測,同樣的可以觀察到在主訊號 27.2度,隨著退火溫度與疊層順序的不同有產生了向右小角度的位移,這證實了退火溫度對於結構有所影響,同時在銅 / (鋅+錫)的比值在 0.8,鋅 / 錫 的比值在 1.2之間,此時的硒化銅鋅錫不管是在結構,與品質方面都有較為突出的表現。
Three stages evaporation and precursor by selenization process are a well-established method for the growth of Cu(In,Ga)Se2 thin films. In order to optimize the crystal properties of Cu2ZnSnSe4 (CZTSe), an analogous method, as known as ternary compound alternating method, is employed in this work. CZTSe thin films were prepared via sequenced deposited of ternary compounds of Cu2SnSe3 and CuxZnSey on molybdenum coated soda-lime glass (Mo/SLG) substrate by molecular beam epitaxy. The growth temperature was set as 150 °C. The variable parameter is the post-deposition annealing temperature (Ta = 450 - 500 oC) with 30 minute period. The structural and optical properties of CZTSe were studied by Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy. In EDX result, the content ratio of Cu/(Zn+Sn) and (Cu+Zn+Sn)/Se is varied from 0.8-1.2 and around unit, respectively. In Raman scattering spectra, three clear phonon modes of CZTSe are observed at 231, 193 and 171 cm−1, respectively. However, the second phases of CuSe and MoSe2 are also obvious, which causes by inter-diffusion in the annealing process. It is useful to suppress the second phase by lower growth temperature. In depth analysis, after polish process, we can obtain the depth-dependent raman spectrum and the secondary phase by the thickness-gradient sample. The Raman spectra at the surface region are dominated by CZTSe phase. With reducing the thickness, molybdenum diselenide secondary phase was measured at the interface of CZTSe/Mo. These results indicate that by ternary compound alternating method, forming CZTSe thin films become easy.
口試合格書 II
誌謝 III
摘要 V
Abstract VII
Table of Contents IX
List of Figures XI
List of Tables XIII
Chapter I Introduction 1
Chapter II Experiment 6
2-1. Fundamental properties of Cu2ZnSnSe4 6
2-2. Secondary phases of Cu2ZnSnSe4 compound 12
2-3 Optical properties of Cu2ZnSnSe4 compound 15
2-4 Experiment Instruments 17
2-4-1 Plasma-assisted molecular beam epitaxy (PA-MBE) 17
2-4-2 Micro-Raman scattering measurement 20
2-4-3 Sample preparation 22
2-4-4 Growth parameters of CuxZnSey thin films with variable Zn flux 23
2-4-5 Growth parameters of Cu2SnSe3 thin films with variable Sn flux 23
2-4-6 .Alternating ternary compound method 24
Chapter III Fundamental properties of Cu2ZnSnSe4 thin films 27
3-1 Influence of growth temperature (Ts) 27
3-2 Optimum the Ternary Compound of Cu2SnSe3 (CTS) and CuxZnSey (CZS) 29
3-2-1 .Cu-Zn-Se system 29
3-2-2 .Cu-Sn-Se system 30
3-3 Synthesis and characterization of the Cu2ZnSnSe4 35
3-3-1 .Alternating ternary compound of stacked layers 35
3-3-2 . Depth profile of stacked layers 37
Chapter V 45
Conclusion 45
Refersence 46
[1]H. Katagiri et al., Thin Solid Films, vol. 517, pp. 2455-2460, 2009.
[2]Teodor K. Todorov et al, Adv. Mater., vol. 22, pp. 156-159, 2010.
[3]K. Ito et al, J. Appl. Phys., vol. 27, p. 2094, 1988.
[4]T. M. Friedlmeier et al, Proceedings of the 14th European Photovoltaic Solar Energy Conference., p. 1242, 1997.
[5]H. Katagiri et al, Sol. Energy Mater. Sol. Cells, vol. 65, p. 141, 2001.
[6]Teodor K. Todorov et al, Adv. Energy Mater., DOI: 10.1002/aenm.201200348, 2012.
[7]I. Repins et al, Sol. Energy Mater. sol. cells, vol. 101, p. 154, 2012.
[8]K. Wang et al., Appl. Phys. Lett., no. 97, p. 14, 2010.
[9]K. Jimbo et al., Thin Solid Films, no. 515, p. 15, 2007.
[10]Y. Wang and H. Gong, J Electrochem Soc., no. 158, p. 8, 2011.
[11]A. Ennaoui et al., Thin Solid Films, no. 517, p. 7, 2009.
[12]V. G. Rajeshmon et al., Sol. Energy, no. 85, p. 2, 2011.
[13]H. Araki et al., Thin Solid Films, no. 517, p. 4, 2008.
[14]K. Moriya, K. Tanaka, and H. Uchiki, Jpn. J. Appl. Phys, no. Part I 46 (9A), p. 5780, 2007.
[15]W. Ki and H. W. Hillhouse, Adv. Energy Mater., no. 1, p. 5, 2011.
[16]Teodor K. Todorov, Kathleen B. Reuter, and David B. Mitzi, Adv. Mater., vol. 22, pp. 156-159, 2010.
[17]Q. Guo, H. W. Hillhouse, and R. Agrawal, J. Am. Chem. Soc., no. 131, p. 33, 2009.
[18]Wei Wang et al., Adv. Energy Mater., vol. 4, no. 7, 2014.
[19]Ingrid Repins et al, Sol. Energy Mater. & Sol. Cells, vol. 101, pp. 154-159, 2012.
[20]Byungha Shin et al, Appl. Phys. Lett., vol. 101, p. 053903, 2012.
[21]A. Weber et al, J. Appl. Phys., vol. 107, p. 013516, 2010.
[22]C. A. Kaufmann et al., Sol. Energy Mater. Sol. Cells, vol. 93, p. 859, 2009.
[23]Ankur Khare, Burak Himmetoglu, Melissa Johnson, David J. Norris, and Matteo Cococcioni , J. Appl. Phys., vol. 111, p. 083707, 2012.
[24]Tsuyoshi Maeda, Satoshi Nakamura, and Takahiro Wada, Jpn. J. Appl. Phys., vol. 50, p. 04DP07, 2011.
[25]Shiyou Chen, X. G. Gong, Aron Walsh, and Su Huai Wei , Appl. Phys. Lett., vol. 94, p. 041903, 2009.
[26]Aron Walsh, Shiyou Chen, Su Huai Wei, and Xin Gao Gong , Adv. Energy Mater., vol. 2, pp. 400-409, 2012.
[27]Ankur Khare, Burak Himmetoglu, Melissa Johnson, David J. Norris, and Matteo Cococcioni , J. Appl. Phys., vol. 111, p. 083707, 2012.
[28]M. Ganchev et al., Thin Solid Films, vol. 519, pp. 7394–7398, 2011.
[29]H. Yoo et al., Thin Solid Films, vol. 535, pp. 73-77, 2013.
[30]G. Marcano et al., Solid State Commun., vol. 151, pp. 84-86, 2011.
[31]A J Smith, P E Meek , and W Y Liang , J. Phys. C: Solid State Phys., vol. 10, p. 1321, 1977.
[32]Tsukasa Washio et al., J. Mater. Chem., vol. 22, p. 4021, 2012.
[33]Bjo‥ rn Arvid Schubert et al., Prog. Photovolt: Res. Appl., vol. 19, pp. 93-96, 2011.
[34]K. Wang et al., Appl. Phys. Lett., vol. 97, p. 143508, 2010.
[35]Hironori Katagiri, Thin Solid Films, vol. 480–481, pp. 426–432, 2005.
[36]A. V. Moholkar et al., J. Alloys Compd., vol. 509, pp. 7439–7446, 2011.
[37]G. Zoppi et al., Prog. Photovoltaics. Res. Appl., no. 17, p. 315, 2009.
[38]Hongxia Wang, Int. J. Photoenergy, vol. 2011, p. 10, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊