(3.232.129.123) 您好!臺灣時間:2021/02/26 20:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高鈺鈞
研究生(外文):Yu-chun Kao
論文名稱:高導電透明氧化銦鎵錫薄膜製作與特性分析
論文名稱(外文):Growth and Characterization of Transparent Conductive Oxide InGaSnO Thin Films
指導教授:楊祝壽
指導教授(外文):Chu-shou Yang
口試委員:楊祝壽
口試委員(外文):Chu-shou Yang
口試日期:2014-07-21
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:58
中文關鍵詞:氧化銦鎵錫薄膜透明導電膜
外文關鍵詞:Transparent Conductive OxideInGaSnO Thin Films
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本論文以電漿輔助式分子束磊晶法,在藍寶石基板上成長氧化銦鎵錫薄膜以作為透明導電膜的應用。首先成長氧化銦鎵薄膜(In1-xGaxO,x表示鎵在化合物中的原子百分比),利用不同鎵的蒸氣分子通量控制氧化銦鎵薄膜中鎵的濃度。藉由X射線繞射譜分析、穿透光譜以及霍爾效應分析薄膜的光電特性。結果發現當鎵原子濃度(x)在0.41以下時,薄膜呈獻立方晶型的氧化銦鎵;當0.41<x<0.7時,則呈現非晶結構;進一步提高x至0.7以上,則再次呈現為晶體結構(單斜體的氧化銦鎵)。然而,氧化銦鎵的光穿透率最高達86%,導電率卻僅有3.4×10-2 ohm-cm,此特性無法達到市面上對透明導電膜的需求。因此,選擇最佳的氧化銦鎵薄膜成長條件,加入錫以成長一系列氧化銦鎵錫薄膜。從X射線繞射譜分析發現錫原子百分濃度低於70%時,薄膜皆呈現非晶結構,此時的電阻率可達到4.0×10-4 ohm-cm,而且光穿透可達94%以上。而且,其表面粗糙度僅有1.5 nm。最後,我們發現調變基板成長溫度有改善電性,從600 oC降至400 oC導電率提升了1.5倍。
In this work, InGaSnO (IGTO) thin films were grown by plasma-assisted molecular beam epitaxy in order to demonstrate quaternary semiconductor IGTO suitable for transparent conductive oxide (TCO) applications. First of all, In1-xGaxO (x means the cation atoms percentage of the gallium in the compound) thin films were fabricated on sapphire. Concentration of material Ga was controlled by tuning Ga cell temperature between 480 oC ~700 oC, and value of x was between 0.34 ~ 0.7, respectively. The X-ray diffraction (XRD), Transmittance, and Hall measurement are employed to characterize the physical and electrical properties. When x is lower than 0.41, IGO thin films are revealed cubic structure. However, IGO thin films are appeared amorphous between 0.41< x <0.7. With flux of Ga rising above 0.7, crystalline of monoclinic structure of IGO is exhibited by XRD results. Furthermore, high transmittance is estimated as 86% and resistivity is 3.4×10-2 ohm-cm. For TCO requirement, the results of IGO thin films are insufficient on its electrical characterization. In the second step, Sn was lead into IGO to produce high electrical efficiency quaternary semiconductor IGTO. XRD results were demonstrated amorphous structure of IGTO thin films which exhibited lowest resistivity as 4.0×10-4 ohm-cm and high transmittance 94% approximately when concentration of Sn was smaller than 70%. In further, surface roughness was calculated only 1.5 nm by atomic force microscope (AFM). Finally, reducing growth temperature was obtained the best electrical efficiency behavior, conductivity is increase 1.5 times from 600 oC to 400 oC.
致謝 I
摘要 II
Abstract III
目錄 V
List of Figures and Tables VII
Chapter 1. Introduction 1
Chapter 2. Experiment 4
2.1 Crystal structure of In2O3, Ga2O3and SnO2 4
2.2 Homemade molecular beam epitaxy system 9
2.3 Optical spectroscopy 11
2.4 Sample preparation 17
2.5 Sample growth parameters 17
2.5.1 Samples growth via In2O3 base with Ga flux 17
2.5.2 Samples growth via InGaO base with Sn flux 18
2.5.3 Samples growth via InGaSnO change temperature of substrate 19
Chapter 3. Results and discussion 23
3.1 Characterization of InGaO thin films 23
3.2 Characterization of InGaSnO thin film 32
3.3 Influence of growth temperature (Tsub) and substrate type in InGaSnO 39
Chapter 4. Conclusion 44
References 45
[1]M. P. Taylor, D. W. Readey, M. F. A. M. van Hest, C. W. Teplin, J. L. Alleman, M. S. Dabney, L. M. Gedvilas, B. M. Keyes, Bobby TO, J. D. Perkins and D. S. Ginley, Advanced Functional Materials, 18, 3169 ( 2008).
[2]J. S. Rajacidambaram, S. Sanghavi, P. Nachimuthu, V. Shutthanandan, T. Varga, B. Flynn, S. Thevuthasan and G. S. Herman, Journal of Materials Research, 27, 14 (2012).
[3]Y. Q. Jiang, X. X. Chen, R. Sun and Z. Xiong, Materials Chemistry and Physics, 129, 53 (2011).
[4]R. H. Kao, "Growth and Characterization of Transparent Conductive Oxide ZnSnO Thin Films," Master theory, graduate institute of Electro-Optical engineering, Tatung University, (2013).
[5]T. Minami, Thin Solid Films, 7, 1314 (2008).
[6]A. C. Wang, N. L. Edleman, J. R. Babcock, T. J. Marks, M. A. Lane, P. R. Brazis and C. R. Kannewurf, Journal of Materials Research, 17, 3155 (2002).
[7]D. D. Edwards, T. O. Mason, F. Goutenoire and K. R. Poeppelmeier, Applied Physics Letters, 70, 1706 (1997).
[8]T. Oshima and S. Fujita, Physica Status Solidi C-Current Topics in Solid State Physics, 5, 3113 (2008).
[9]H. Q. Chiang, D. Hong, C. M. Hung, R. E. Presley, J. F. Wager, C. H. Park, D. A. Keszler and G. S. Herman, Jouranal of Vacuum Science & Technology B, 24, 2702 (2006).
[10]S. J. Kim, S. Y. Park, K. H. Kim, S. W. Kim and T. G. Kim, IEEE Electron Device Letters, 232 (2014).
[11]G. Rupprecht, Zeitschrift fur Physik, 139, 504 (1954).
[12]H. S. Qian, P. Gunawan, Y. X. Zhang, G. F. Lin, J. W. Zheng and R. Xu, Crystal Growth & Design, 1282 (2008).
[13]C. E. Knapp, G. Hyett, I. P. Parkin and C. J. Carmalt, American Chemical Society, 23, 1726 (2011).
[14]R. L. Weiher and R. P. Ley, Journal of Applied Physics, 299 (1966).
[15]C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeiser, J. R. Weber, J. B. Varley and C. G. V. d. Walle, New Journal of Physics, 23, 1719 (2011).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔