跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/18 13:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李怡婷
研究生(外文):Yi-Ting Lee
論文名稱:Ti-153粉末冶金合金電極吸放氫特性研究
論文名稱(外文):The Study of Hydrogen Storage Characteristics of Ti-153 Cathode through Powder Metallurgical Processing
指導教授:吳臺一
指導教授(外文):Tair-I Wu
口試委員:吳臺一
口試委員(外文):Tair-I Wu
口試日期:2014-06-04
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:64
中文關鍵詞:儲氫特性熱壓Ti-153 合金元素分析
外文關鍵詞:hydrogen storaghot pressingTi-153 alloyelement analysis
相關次數:
  • 被引用被引用:3
  • 點閱點閱:425
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用Ti-15V-3Al-3Sn-3Cr (Ti-153) 合金鑄鍛板材先以氣相滲氫製備粉末,接續將Ti-153 合金粉末熱壓製作為陰極電極,利用水溶液滲氫製程吸氫,在於300℃低真空環境下放氫,觀察Ti-153 合金粉冶電極之儲氫特性。試片處理前後之微結構變化是利用X光繞射術 (X-raydiffractometry; XRD) 觀察及分析,SEM 觀察其表面形態;以元素分析儀 (element analyse; EA) 測量其吸氫量和放氫量;結構性則利用洛式硬度(HR15N) 。結果發現,以HPb 製程參數(700℃-25MPa-2h) 所製備出的電極孔隙率和視密度各為20.60%和3.857g/cm3,滲氫量最佳,結構性適中;HPa 製程參數(600℃-25MPa-2h) 所製備出的電極結構性差,重量損失8.11%;HPc 製程參數(800℃-25MPa-2h) 所製備出的電極結構最佳,但因其密度緻密,孔隙率最低,滲氫量相較於其他兩者約低4倍。而傳統鑄鍛塊材依相同滲氫條件做處理後,發現其因氫脆現象造成試片斷裂,無法持續最為電極使用,不利於回收再製,且重量損失3.44%,結構性較HPb 系列差。將電極置於300℃低真空環境下釋放氫氣,發現輥軋材之放氫量甚少,而粉冶材放氫量較多,粉冶電極有一部分之氫氣儲存於孔隙之中,於相對低溫下放氫較容易;而對輥軋塊材來說,氫氣只能儲存於晶格間隙或氫化物中,於此溫度下放氫量及擴散較少且較慢。
Ti-153 sheet specimens were adopted in this study to be treated by thermohydrogen processing to obtain the original alloy powder. The alloy powder was further employed in producing porous cathodes with various porosities to see their hydrogen uptake ability after a designed cyclic hydrogenation treatment and hydrogen evolution ability after vacuum degassing at 300oC - 3.0×10-2 torr. The microstructural changes were investigated by using X-ray diffractometry (XRD). Particle size, surface morphology variations and pore distribution were observed by employing scanning electron microscopy (SEM). Elemental analyzer (EA) was applied to obtain hydrogen contents of processed specimens. The optimal cathode was acquired after Ti-153 sheet specimens processed according to the HPb
parameters: (1) powder processing – 300oC-H2(g) 5MPa-15hrs and (2) hot press sintering (25MPa) – 700oC-1.0×10-2 torr.-2hrs. The apparent density of the optimal cathode is 3.857 g/cm3 and the porosity was evaluated as 20.60%. The hydrogen content of the HPb specimen after the designed cyclic hydrogenation treatment was 2.854wt% which is close to the saturated concentration of hydrogen in titanium alloys. After the HPb specimen had been degassed at 300oC- 3.0×10-2 torr for two hours (designated as bVH4D), of which the hydrogen content was lowered to 1.224wt%. The calculated hydrogen uptake and hydrogen evolution payloads for the porous specimen (HPb) in contrast to the bulk one (B0) are 1.82 and 2.21 respectively.
中文摘要II
AbstractIII
目錄IV
表目錄VII
圖目錄VIII
第一章 緒論1
1.1 前言1
1.2 研究目的3
第二章 文獻回顧與理論分析5
2.1 鈦合金分類5
2.1.1 α 型、近α 型鈦合金5
2.1.2 α+β 型鈦合金6
2.1.3 β 型、近β 型鈦合金6
2.2 熱氫製程7
2.3 粉末冶金熱壓製程8
2.4 滲氫方式9
2.5 氫之固溶與擴散行為10
2.6 影響電解滲氫之因素12
2.6.1 電解液溫度12
2.6.2 電流密12
2.6.3 溶液酸鹼值13
2.6.4 滲氫時間13
2.6.5 反應面積大小及材料結構13
2.7 砷化物促進滲氫機制13
第三章 實驗方法與流程19
3.1 實驗流程19
3.1.1 Ti-15V-3Al-3Sn-3Cr 粉末製備19
3.1.2 Ti-15V-3Al-3Sn-3Cr 粉末熱壓成型獲致電極19
3.1.3 循環滲氫固溶處理19
3.2 實驗儀器與分析設備20
3.2.1 X-ray 繞射分析術 (XRD)20
3.2.2 視孔隙率胚體視密度和測量20
3.2.3 掃描式電子顯微術 (Scanning Electron Microscopy)21
3.2.4 非金屬元素分析術 (Elemental Analyzer; EA) 21
3.2.5 拉曼散射光譜儀 (Raman Scattering Spectrometer)22
3.2.6 Rockwell 硬度試驗機 (Rockwell Hardness Test)22
第四章 結果與討論28
4.1 材料微觀結構變化28
4.1.1 X光繞射分析 (X-ray Diffractometry; XRD)28
4.1.2 粉末表面形貌與粒徑分析30
4.1.3 粉冶材鈦合金電極表面形貌30
4.2 吸放氫研究31
4.2.1 粉冶電極視密度與孔隙率31
4.2.2 重量變化32
4.2.3 非金屬元素分析 (EA)32
4.2.4 電極吸氫後之表面形貌觀察33
第五章 結論54
參考文獻56
[1] N. A. Braga, N. G. Ferreira, and M. R. Baldan, “Hydrogen effect on the morphology and structure of 3D porous titanium in the HFCVD-diamond growth environment,” Materials Characterization, vol. 62, no. 10, pp. 995-999, 2011.
[2] P. Gipe, “The wind industry's experience with aesthetic criticism,”LEONARDO-OXFORD THEN CAMBRIDGE MA-, vol. 26, pp.243-243, 1993.
[3] A. f. I. Archaeology, Industrial Archaeology Review: Oxford University Press, 1987.
[4] F. Qiang, “Radiation (Solar),” Holton, JR, Curry, JA & Pyle, JA Encyclopedia of Atmospheric Sciences, vol. 1, pp. 1859-1863, 2003.
[5] B. Sorensen, Renewable Energy: Physics, Engineering, Environmental Impacts, Economics & Planning: Elsevier Science, 2010.
[6] B. M. Diaconu, “Energy analysis of a solar-assisted ejector cycle air conditioning system with low temperature thermal energy storage,”Renewable Energy, vol. 37, no. 1, pp. 266-276, 2012.
[7] Y. Tian, and C. Y. Zhao, “A review of solar collectors and thermal energy storage in solar thermal applications,” Applied Energy, vol. 104, no. 0, pp. 538-553, 2013.
[8] L. Li, L. Duan, Y. Xu, M. Gorlov, A. Hagfeldt, and L. Sun, “A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2,” Chemical Communications, vol. 46, no. 39, pp.7307-7309, 2010.
[9] T. L. Gibson, and N. A. Kelly, “Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices,”International journal of hydrogen energy, vol. 35, no. 3, pp. 900-911, 2010.
[10] Y. Mahajan, S. Nadiv, and W. R. Kerr, “Studies of hydrogenation in Ti-6Al-4V alloy,” Scripta Metallurgica, vol. 13, no. 8, pp. 695-699, 1979.
[11] V. A. Goltsov, “The phenomenon of controllable hydrogen phase naklep and the prospects for its use in metal science and engineering,”Materials Science and Engineering, vol. 49, no. 2, pp. 109-125, 1981.
[12] R. J. Lederich, S. M. L. Sastry, J. E. O’Neal, and W. R. Kerr, "influence of hydrogen addition on high temperature superplasticity of titanium alloy." pp. 115-128.
[13] W. Kerr, “The effect of hydrogen as a temporary alloying element on the microstructure and tensile properties of Ti-6Al-4V,” Metallurgical Transactions A, vol. 16, no. 6, pp. 1077-1087, 1985.
[14] F. H. Froes, D. Eylon, and C. Suryanarayana, “Thermochemical processing of titanium alloys,” JOM, vol. 42, no. 3, pp. 26-29, 1990.
[15] B. A. Kolachev, “Reversible hydrogen alloying of titanium alloys,”Metal Science and Heat Treatment, vol. 35, no. 10, pp. 586-591, 1993.
[16] O. N. Senkov, J. J. Jonas, and F. H. Froes, “Recent advances in the thermohydrogen processing of titanium alloys,” JOM, vol. 48, no. 7, pp. 42-47, 1996.
[17] T. N. Veziroǧlu, and V. A. Goltsov, “A new aspect of hydrogen movement,” International Journal of Hydrogen Energy, vol. 22, no.2–3, pp. 113, 1997.
[18] D. H. Kohn, and P. Ducheyne, “Microstructural refinement of β-sintered and Ti-6Al-4V porous-coated by temporary alloying with hydrogen,” Journal of Materials Science, vol. 26, no. 2, pp. 534-544, 1991.
[19] T. I. Wu, and J. K. Wu, “Surface hardening of Ti-6Al-4V alloy by hydrogenation,” Scripta Metallurgica et Materialia, vol. 25, no. 10, pp.2335-2338, 1991.
[20] D. Eliezer, N. Eliaz, O. N. Senkov, and F. H. Froes, “Positive effects
of hydrogen in metals,” Materials Science and Engineering: A, vol.280, no. 1, pp. 220-224, 2000.
[21] D. Silambarasan, V. J. Surya, V. Vasu, and K. Iyakutti, “Investigation
of single-walled carbon nanotubes-titanium metal composite as a possible hydrogen storage medium,” International Journal of Hydrogen Energy, vol. 38, no. 34, pp. 14654-14660, 2013.
[22] F. Rigas, and P. Amyotte, Hydrogen safety: CRC Press, 2012.
[23] C. R. F. Azevedo, D. Rodrigues, and F. Beneduce Neto, “Ti–Al–V powder metallurgy (PM) via the hydrogenation–dehydrogenation (HDH) process,” Journal of Alloys and Compounds, vol. 353, no. 1–2, pp. 217-227, 2003.
[24] F. H. Froes Sam, "8 - Powder metallurgy of titanium alloys," Advances in Powder Metallurgy, I. Chang and Y. Zhao, eds., pp. 202-240: Woodhead Publishing, 2013.
[25] L. Bolzoni, E. M. Ruiz-Navas, and E. Gordo, “Powder metallurgy CP-Ti performances: Hydride–dehydride vs. sponge,” Materials & Design, vol. 60, no. 0, pp. 226-232, 2014.
[26] J. Zhao, H. Ding, Y. Zhong, and C. S. Lee, “Effect of thermo hydrogen treatment on lattice defects and microstructure refinement of Ti6Al4V alloy,” International Journal of Hydrogen Energy, vol. 35, no. 12, pp.6448-6454, 2010.
[27] C.-L. Huang, Y.-J. Gao, T.-L. Chuang, V. K. S. Hsiao, and T.-I. Wu, “Study of the Behavior of Titanium Alloys as the Cathode for Photovoltaic Hydrogen Production,” International Journal of Photoenergy, pp. 1-6, 2013.
[28] C. Leyens, and M. Peters, Titanium and titanium alloys: Wiley Online Library, 2003.
[29] E. K. Molchanova, Phase diagrams of titanium alloys: Israel Program for Scientific Translations, 1965.
[30] O. n. Senkov, and F. H. Froes, “Thermohydrogen processing of titanium alloys,” International Journal of Hydrogen Energy, vol. 24, no. 6, pp. 565-576, 1999.
[31] V. A. Goltsov, “Hydrogen treatment (processing) of materials: current status and prospects,” Journal of Alloys and Compounds, vol. 293–295, pp. 844-857, 1999.
[32] D. Eliezer, and T. H. Bollinghaus, "18 - Hydrogen effects in titanium
alloys," Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R. P. Gangloff and B. P. Somerday, eds., pp. 668-706: Woodhead Publishing, 2012.
[33] S. Pillot, and L. Coudreuse, "2 - Hydrogen-induced disbonding and embrittlement of steels used in petrochemical refining," Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R. P. Gangloff and B. P. Somerday, eds., pp. 51-93: Woodhead Publishing, 2012.
[34] W. R. Kerr, P. R. Smith, M. E. Rosenblum, F. J. Gurney, Y. R. Mahajan, and L. R. Bidwell, "Hydrogen as a Temporary Alloying Element in Titanium." pp. 2477-2486.
[35] L. Bolzoni, E. M. Ruiz-Navas, E. Neubauer, and E. Gordo, “Inductive hot-pressing of titanium and titanium alloy powders,” Materials Chemistry and Physics, vol. 131, no. 3, pp. 672-679, 2012.
[36] K. T. Kim, and H. C. Yang, “Densification behavior of titanium alloy powder during hot pressing,” Materials Science and Engineering: A, vol. 313, no. 1–2, pp. 46-52, 2001.
[37] R. G. Vogt, F. H. Froes, D. Eylon, and L. Levin, "Thermo-Chemical Treatment (TCT) of Titanium Alloy Net Shapes." pp. 145-153.
[38] W. H. Kao, D. Eylon, C. F. Yolton, and F. H. Froes, "Effect of Temporary Alloying by Hydrogen (Hydrovac) on the Vacuum Hot Pressing and Microstructure of Titanium Alloy Powder Compacts." pp.289-301.
[39] M. Niinomi, B. Gong, T. Kobayashi, Y. Ohyabu, and O. Toriyama, “Fracture Characteristics of Ti-6Al-4V and Ti-5Al-2.5Fe with Refined Microstructure Using Hydrogen,” Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, vol. 26, no.5, pp. 1141-1151, 1995.
[40] D. H. Kohn, and P. Ducheyne, “Microstructural Refinement of Beta-Sintered and Ti-6al-4v Porous-Coated by Temporary Alloying with Hydrogen,” Journal of Materials Science, vol. 26, no. 2, pp.534-544, 1991.
[41] L. Levin, R. G. Vogt, D. Eylon, and F. H. Froes, "Fatigue Resistance Improvement of Ti-6Al-4V by Thermochemical Treatment." pp.2107-2114.
[42] M. L. Wasz, F. R. Brotzen, R. B. McLellan, and A. J. Griffin, “Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium,” International Materials Reviews, vol. 41, no. 1, pp.1-12, 1996.
[43] T. I. Wu, C. T. Liu, and J. K. Wu, “Use of thiourea to inhibit the incorporation of hydrogen in Ti and Ti-6Al-4V alloy,” Materials Letters, vol. 30, no. 5-6, pp. 377-383, 1997.
[44] G. Boccalon, G. Grillo, and V. Vittori, Film of titanium hydride, European, 1991.
[45] S. R. Peddada, I. M. Robertson, and H. K. Birnbaum, “Hydride Precipitation in Vapor-Deposited Ti Thin-Films,” Journal of Materials Research, vol. 8, no. 2, pp. 291-296, 1993.
[46] R. D. McCright, "Effects of Environmental Species and Metallurgical Structure on the Hydrogen Entry into Steel." pp. 306-325.
[47] J. Kargol, N. Fiore, and R. Coyle, “A model for H-Absorption by metals,” Metallurgical Transactions A, vol. 12, no. 2, pp. 183-191, 1981.
[48] W. Koster, L. Bangert, and M. Evers, “Uber Das Dampfungsverhalten Von Wasserstoffbeladenem Titan,” Zeitschrift Fur Metallkunde, vol.47, no. 8, pp. 564-570, 1956.
[49] R. S. Vitt, and K. Ono, “Hydrogen Solubility in Alpha Titanium” Metallurgical Transactions, vol. 2, no. 2, pp. 608, 1971.
[50] H. Margolin, and H. Portisch, “Hydrogen-Induced Expansions in Titanium-Aluminum Alloys,” Transactions of the Metallurgical Society of Aime, vol. 242, no. 9, pp. 1901, 1968.
[51] L. W. Berger, D. N. Williams, and R. I. Jaffee, “Hydrogen in Titanium-Aluminum Alloys,” Transactions of the American Institute of Mining and Metallurgical Engineers, vol. 212, pp. 509-513, 1958.
[52] N. E. Paton, B. S. Hickman, and D. H. Leslie, “Behavior of Hydrogen in Alpha-Phase Ti-Al Alloys,” Metallurgical Transactions, vol. 2, no.10, pp. 2791, 1971.
[53] J. L. Waisman, R. Toosky, and G. Sines, “Uphill Diffusion and Progressive Embrittlement - Hydrogen in Titanium,” Metallurgical Transactions a-Physical Metallurgy and Materials Science, vol. 8, no.8, pp. 1249-1256, 1977.
[54] V. I. Syshchikov, Metals Abstracts, p.^pp. 1402: American Society for Metals, Metals Society, Institute of Metals, 1971.
[55] Papazogl.Tp, and M. T. Hepworth, “Diffusion of Hydrogen in Titanium,” Transactions of the Metallurgical Society of Aime, vol.242, no.4, pp.682, 1968.
[56] R. N. Iyer, and H. W. Pickering, “Mechanism and Kinetics of Electrochemical Hydrogen Entry and Degradation of Metallic Systems,” Annual Review of Materials Science, vol.20, pp.299-338,1990.
[57] B. E. Conway, and G. Jerkiewicz, “Thermodynamic and Electrode Kinetic Factors in Cathodic Hydrogen Sorption into Metals and Its Relationship to Hydrogen Adsorption and Poisoning,” Journal of Electroanalytical Chemistry, vol. 357, no.1-2, pp.47-66, 1993.
[58] L. Gao, and B. E. Conway, “Absorption and Adsorption of H in the H-2 Evolution Reaction and the Effects of Coadsorbed Poisons,” Electrochimica Acta, vol. 39, no. 11-12, pp. 1681-1693, 1994.
[59] L. J. Gao, and B. E. Conway, “Poisoning Effects of Arsenic Species on H Adsorption and Kinetic-Behavior of the H-2 Evolution Reaction at Pt in Koh Solution,” Journal of Electroanalytical Chemistry, vol.395, no.1-2, pp.261-271, 1995.
[60] W. Hu, and J.-Y. Lee, “Electrocatalytic properties of Ti2Ni/Ni-Mo composite electrodes for hydrogen evolution reaction,” International Journal of Hydrogen Energy, vol.23, no.4, pp.253-257, 1998.
[61] I. I. Phillips, P. Poole, and L. L. Shreir, “Hydride Formation during Cathodic Polarization of Ti .2. Effect of Temperature and Ph of Solution on Hydride Growth,” Corrosion Science, vol.14, no.9, pp.533-542, 1974.
[62] L. C. Covington, “Influence of Surface Condition and Environment on the Hydriding of Titanium,” Corrosion, vol.35, no.8, pp. 378-382,1979.
[63] L. J. Korb, and ASM, "Metals Handbook, Ninth Edition: Volume 13 - Corrosion (ASM Handbook)," p. 669: ASM International, Materials Park, 1987.
[64] W. T. Tsai, C. P. Ju, Y. N. Wen, and J. T. Lee, “Hydride Formation during the Cathodic Polarization of Titanium in Artificial Sea-Water,” Surface & Coatings Technology, vol.31, no.4, pp.401-407, 1987.
[65] I. I. Phillips, P. Poole, and L. L. Shreir, “Hydride Formation during Cathodic Polarization of Ti .1. Effect of Current-Density on Kinetics of Growth and Composition of Hydride,” Corrosion Science, vol.12, no.11, pp.855-866, 1972.
[66] P. Millenbach, and M. Givon, “The Electrochemical Formation of Titanium Hydride,” Journal of the Less-Common Metals, vol. 87, no.2, pp. 179-184, 1982.
[67] B. G. Pound, “Hydrogen Ingress in Titanium,” Corrosion, vol. 47, no.2, pp. 99-104, Feb, 1991.
[68] C. T. Liu, T. I. Wu, and J. K. Wu, “Formation of nanocrystalline structure of Ti-6Al-4V alloy by cyclic hydrogenation-dehydrogenation treatment,” Materials Chemistry and Physics, vol. 110, no. 2-3, pp.440-444, 2008.
[69] J. F. Newman, and L. L. Shreir, “Role of Hydrides in Hydrogen Entry into Steel from Solutions Containing Promoters,” Corrosion Science, vol.9, no.8, pp. 631-641, 1969.
[70] 劉加德, “循環熱氫製程對Ti-6Al-4V 合金晶粒細化之研究,博士論文,” 國立台灣海洋大學材料工程研究所, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top