跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/26 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王梓瑄
研究生(外文):Zi-Xuan Wang
論文名稱:鎂.鋁.鈦部分取代對磷酸鋰鐵正極材料的結構與電化學特性的影響
論文名稱(外文):Effects of Mg- , Al-, and Ti-substitution on the structural and electrochemical properties of LiFePO4/C materials
指導教授:吳溪煌
指導教授(外文):She-huang Wu
口試委員:吳溪煌
口試委員(外文):She-huang Wu
口試日期:2014-07-07
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:166
中文關鍵詞:鋰離子電池磷酸鋰鐵
外文關鍵詞:Lithium ion batteryLiFePO4
相關次數:
  • 被引用被引用:2
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
以溶液法合成橄欖石結構之LiFePO4基正極材料粉末,探討Mg2+, Al3+, Ti4+部分取代Fe2+對LiFePO4正極材料結構及電化學性質之影響。以XRD、NPD、ICP-OES、EA 及SEM分析粉末之晶體結構、化學組成、碳含量及表面形貌。並以循環伏安分析、循環充放電測試探討所合成粉末之電化學特性。
結果顯示,在較高的參雜量的樣品,LiFe0.93Al0.07PO4、LiFe0.95Ti0.05PO4及LiFe0.93Ti0.07PO4中會析出Al2O3及TiO2雜相。而在較低的參雜量時,晶格常數明顯下降。在電化學特性方面,合成的LiFe1-xMgxPO4和LiFe1-xAlxPO4粉末中,以LiFe0.97Mg0.03PO4及LiFe0.95Al0.05PO4具有較高的充放電容及較高的速率充放電能力。而在合成的LiFe1-xTixPO4粉末中,在低充放電速率時LiFe0.97Ti0.03PO4具有較高的循環充放電電容量。而在高充放電速率下LiFe0.93Ti0.07PO4¬有較高的充放電電容量。
Cation substituted LiFe1-xMxPO4/C (M = Mg2+, Al3+, and Ti4+, 0 < x < 0.07) were prepared via a solution method. The crystalline structure, chemical composition, and morphology of the prepared samples were analyzed by X-ray diffraction (XRD), neutron powder diffraction (NPD), inductively coupled plasma-optical emission spectrometer (ICP-OES), elemental analyzer (EA), and scanning electron microscope (SEM). The effects of cation substitution on the electrochemical properties as cathode material of lithium ion batteries were studied with cyclic voltammetric and capacity retention studies. Olivine phase was detected exclusively in the prepared samples except the samples prepared with compositions of LiFe0.93Al0.07PO4, LiFe0.95Ti0.05PO4, and LiFe0.93Ti0.07PO4. In this preliminary result, the lattice parameters of olivine decrease significantly and become saturated at amount of substitution x = 0.03 for the Mg2+, Al3+, Ti4+-substituted samples. LiFe0.97Mg0.03PO4 and LiFe0.95Al0.05PO4 manifest the highest capacity and the most promising rate capability among the Mg2+ and Al3+-substituted samples, respectively. While LiFe0.97Ti0.03PO4 shows the highest capacity at low current density (17mA g-1), LiFe0.93Ti0.07PO4 exhibits the highest capacity at large current density (850mA g-1) among the Ti4+-substituted samples.
中文摘要 I
Contents IV
List of Tables VIII
List of Figures XIII
Chapter 1 Introduction 1
Chapter 2 Literature Review 5
2-1 Principle of lithium ion batteries 5
2-2 Cathode materials for lithium ion batteries 9
2-2-1 LiCoO2 9
2-2-2 LiNiO2 11
2-2-3 LiMn2O4 12
2-2-4 LiNi1/3Mn1/3Co1/3O2 13
2-2-5 LiFePO4 15
2-3 Enhancing LiFePO4 electrical conductivity 18
2-4 Cyclic voltammetry method, CV 20
Chapter 3 Experimental 23
3-1 Powder preparation 23
3-1-1 Synthesis of pure olivine LiFePO4 powder 23
3-1-2 Synthesis of the LiFe1-xMgxPO4 powders 24
3-1-3 Synthesis of the LiFe1-xAlxPO4 powders 24
3-1-4 Synthesis of the LiFe1-xTixPO4 and LiFe1-2xTixPO4 powders 25
3-2 Powder characterization 26
3-2-1 X-ray powder diffraction analysis 26
3-2-2 Neutron powder diffraction analysis 27
3-2-3 Composition determination 28
3-2-4 Carbon content determination 28
3-3 Morphology observation 29
3-3-1 Scanning electron microscope 29
3-4 Assemble of test cell 30
3-4-1 preparation of the cathode electrode 30
3-4-2 preparation of the coin-type cell 31
3-5-1 Cyclic voltammetric study, CV 33
3-5-2 Capacity retention study 33
Chapter 4 Results and Discussion 34
4-1 Characterization of the prepared Mg2+-substituted LiFe1-xMgxPO4 cathode materials 34
4-1-1 Crystalline structure of the LiFe1-xMgxPO4 samples studied with X-ray and neutron diffraction analysis 34
4-1-2 Compositions and carbon contents of the prepared LiFe1-xMgxPO4 samples 50
4-1-3 Morphologies of the prepared LiFe1-xMgxPO4 samples 52
4-1-4 Cyclic voltammograms of LiFe1-xMgxPO4 cathodes 54
4-1-5 Diffusion coefficient of Li+ ions in the preparedLiFe1-xMgxPO4 cathodes 56
4-1-6 Cycling performance of the coin-type cells comprised with prepared LiFe1-xMgxPO4 (0 < x < 0.07) cathode materials 62
4-2 Characterization of the prepared Al3+-substituted LiFe1-xAlxPO4 cathode materials 68
4-2-1 Crystalline structure of the LiFe1-xAlxPO4 samples studied with X-ray and Neutron powder diffraction analysis 68
4-2-2 Compositions and carbon contents of the prepared LiFe1-xAlxPO4 samples 84
4-2-3 Morphologies of the prepared LiFe1-xAlxPO4 samples 86
4-2-4 Cyclic voltammograms of LiFe1-xAlxPO4 cathodes 88
4-2-5 Diffusion coefficient of Li+ ions in LiFe1-xAlxPO4 cathodes 90
4-2-6 Cycling performance of the coin-type cells comprised with prepared LiFe1-xAlxPO4 (0 < x < 0.07) cathode materials 95
4-3-1 Crystalline structure of the LiFe1-xTixPO4 samples studied with X-ray and Neutron powder diffraction analysis 101
4-3-2 Compositions and carbon contents of the prepared LiFe1-xTixPO4 samples 117
4-3-3 Morphologies of the prepared LiFe1-xTixPO4 samples 119
4-3-4 Cyclic voltammograms of LiFe1-xTixPO4 cathodes 121
4-3-5 Diffusion coefficient of Li+ ions in the preparedLiFe1-xTixPO4 cathodes 123
4-3-6 Cycling performance of the coin-type cells comprised with prepared LiFe1-xTixPO4 (0 < x < 0.07) cathode materials 128
Chapter 5 Conclusions 134
Chapter 5 Conclusions 134
Reference 136
[1] R. Koksbang, J. Barker, H. Shi, M.Y. Saidi, Solid State Ionics, 84 (1996) 1-21.
[2] R. Ruffo, C. Wessells, R.A. Huggins, Y. Cui, Electrochemistry Communications, 11 (2009) 247-249.
[3] G.X. Wang, S. Zhong, D.H. Bradhurst, S.X. Dou, H.K. Liu, Journal of Power Sources, 76 (1998) 141-146.
[4] H.M. Wu, J.P. Tu, X.T. Chen, Y. Li, X.B. Zhao, G.S. Cao, Journal of Electroanalytical Chemistry, 586 (2006) 180-183.
[5] H. Xia, Z. Luo, J. Xie, Progress in Natural Science: Materials International, 22 (2012) 572-584.
[6] N. Kamarulzaman, Z. Osman, M.R. Muhamad, Z.A. Ibrahim, A.K. Arof, N.S. Mohamed, Journal of Power Sources, 97–98 (2001) 722-725.
[7] T.-H. Cho, Y. Shiosaki, H. Noguchi, Journal of Power Sources, 159 (2006) 1322-1327.
[8] Y. Yao, H. Liu, G. Li, H. Peng, K. Chen, Electrochimica Acta, 113 (2013) 340-345.
[9] A.K. Padhi, K. Nanjundaswamy, J.B.d. Goodenough, Journal of the Electrochemical Society, 144 (1997) 1188-1194.
[10] D.D. MacNeil, Z. Lu, Z. Chen, J.R. Dahn, Journal of Power Sources, 108 (2002) 8-14.
[11] M. Takahashi, S.-i. Tobishima, K. Takei, Y. Sakurai, Solid State Ionics, 148 (2002) 283-289.
[12] X. Zhi, G. Liang, L. Wang, X. Ou, J. Zhang, J. Cui, Journal of Power Sources, 189 (2009) 779-782.
[13] H. Zhang, Y. Xu, C. Zhao, X. Yang, Q. Jiang, Electrochimica Acta, 83 (2012) 341-347.
[14] Y.-G. Huang, F.-H. Zheng, X.-H. Zhang, Q.-Y. Li, H.-Q. Wang, Electrochimica Acta.
[15] J. Li, Q. Qu, L. Zhang, L. Zhang, H. Zheng, Journal of Alloys and Compounds, 579 (2013) 377-383.
[16] E. Avci, M. Mazman, D. Uzun, E. Bicer, T. Şener, Journal of Power Sources, 240 (2013) 328-337.
[17] H. Liu, C. Miao, Y. Meng, Y.-B. He, Q. Xu, X. Zhang, Z. Tang, Electrochimica Acta, 130 (2014) 322-328.
[18] H.-S. Kim, B.-W. Cho, W.-I. Cho, Journal of Power Sources, 132 (2004) 235-239.
[19] Y.-h. Ding, P. Zhang, Transactions of Nonferrous Metals Society of China, 22, Supplement 1 (2012) s153-s156.
[20] X. Yin, K. Huang, S. Liu, H. Wang, H. Wang, Journal of Power Sources, 195 (2010) 4308-4312.
[21] L. Pang, M. Zhao, X. Zhao, Y. Chai, Journal of Power Sources, 201 (2012) 253-258.
[22] H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu, Electrochemistry Communications, 8 (2006) 1553-1557.
[23] D.W. Murphy, F.J. Di Salvo, J.N. Carides, J.V. Waszczak, Materials Research Bulletin, 13 (1978) 1395-1402.
[24] M.S. Whittingham, Intercalation chemistry, (1982) 1-18.
[25] http://www.gaston-lithium.com/tech-certificates.html.
[26] T.B. Reddy, Linden's Handbook of Batteries, McGraw-Hill New York, 2011.
[27] K. Ozawa, Solid State Ionics, 69 (1994) 212-221.
[28] J. Kim, P. Fulmer, A. Manthiram, Materials research bulletin, 34 (1999) 571-579.
[29] H. Gabrisch, R. Yazami, B. Fultz, Electrochemical and solid-state letters, 5 (2002) A111-A114.
[30] J. Dahn, U. Von Sacken, M. Juzkow, H. Al‐Janaby, Journal of the Electrochemical Society, 138 (1991) 2207-2211.
[31] H. Arai, M. Tsuda, Y. Sakurai, Journal of power sources, 90 (2000) 76-81.
[32] R.K.B. Gover, P.R. Slater, Annual Reports Section "A" (Inorganic Chemistry), 98 (2002) 505-529.
[33] Z. Xiao, Y. Zhou, L. Song, F. Zhang, J. Gao, J. Zeng, Z. Cao, Journal of Alloys and Compounds, 592 (2014) 226-230.
[34] C.-H. Zheng, X. Liu, Z.-F. Wu, Z.-D. Chen, D.-L. Fang, Electrochimica Acta, 111 (2013) 192-199.
[35] T. Ohzuku, J. Kato, K. Sawai, T. Hirai, Journal of The Electrochemical Society, 138 (1991) 2556-2560.
[36] N. Yabuuchi, T. Ohzuku, Journal of Power Sources, 119–121 (2003) 171-174.
[37] T. Ohzuku, Y. Makimura, Chemistry Letters, 30 (2001) 642-643.
[38] L. Zhang, X. Wang, T. Muta, D. Li, H. Noguchi, M. Yoshio, R. Ma, K. Takada, T. Sasaki, Journal of Power Sources, 162 (2006) 629-635.
[39] S.C. Yin, Y.H. Rho, I. Swainson, L.F. Nazar, Chemistry of Materials, 18 (2006) 1901-1910.
[40] A.S. Andersson, J.O. Thomas, B. Kalska, L. Haggstrom, Electrochemical and Solid-State Letters, 3 (2000) 66-68.
[41] T. Nakamura, K. Sakumoto, M. Okamoto, S. Seki, Y. Kobayashi, T. Takeuchi, M. Tabuchi, Y. Yamada, Journal of Power Sources, 174 (2007) 435-441.
[42] A. Yamada, H. Koizumi, S.-i. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, Y. Kobayashi, Nature materials, 5 (2006) 357-360.
[43] V. Srinivasan, J. Newman, Electrochemical and solid-state letters, 9 (2006) A110-A114.
[44] N. Meethong, H.-Y.S. Huang, W.C. Carter, Y.-M. Chiang, Electrochemical and Solid-State Letters, 10 (2007) A134-A138.
[45] C. Delacourt, P. Poizot, J.-M. Tarascon, C. Masquelier, Nature materials, 4 (2005) 254-260.
[46] J. Barker, M. Saidi, J. Swoyer, Electrochemical and Solid-State Letters, 6 (2003) A53-A55.
[47] A. Padhi, K. Nanjundaswamy, C. Masquelier, S. Okada, J. Goodenough, Journal of the Electrochemical Society, 144 (1997) 1609-1613.
[48] T. Nakamura, K. Sakumoto, S. Seki, Y. Kobayashi, M. Tabuchi, Y. Yamada, Journal of The Electrochemical Society, 154 (2007) A1118-A1123.
[49] A. Awarke, S. Lauer, S. Pischinger, M. Wittler, Journal of Power Sources, 196 (2011) 405-411.
[50] B. Ellis, P.S. Herle, Y.-H. Rho, L. Nazar, R. Dunlap, L.K. Perry, D. Ryan, Faraday discussions, 134 (2007) 119-141.
[51] B. Ellis, L.K. Perry, D.H. Ryan, L. Nazar, Journal of the American Chemical Society, 128 (2006) 11416-11422.
[52] J. Li, W. Yao, S. Martin, D. Vaknin, Solid State Ionics, 179 (2008) 2016-2019.
[53] F. Zhou, C. Marianetti, M. Cococcioni, D. Morgan, G. Ceder, Physical Review B, 69 (2004) 201101.
[54] Y. Wang, R. Mei, X. Yang, Ceramics International, 40 (2014) 8439-8444.
[55] T. Azib, S. Ammar, S. Nowak, S. Lau-Truing, H. Groult, K. Zaghib, A. Mauger, C.M. Julien, Journal of Power Sources, 217 (2012) 220-228.
[56] K.L. Harrison, C.A. Bridges, M.P. Paranthaman, C.U. Segre, J. Katsoudas, V.A. Maroni, J.C. Idrobo, J.B. Goodenough, A. Manthiram, Chemistry of Materials, 25 (2013) 768-781.
[57] D. Li, Y. Huang, N. Sharma, Z. Chen, D. Jia, Z. Guo, Physical Chemistry Chemical Physics, 14 (2012) 3634-3639.
[58] P.P. Prosini, D. Zane, M. Pasquali, Electrochimica Acta, 46 (2001) 3517-3523.
[59] J.B.G. N. Ravet, S. Besner, M. Simoneau, P. Hovington and M. Armand, The Electrochemical Society and The Electrochemical Society of Japan Meeting, 99-2 (1999 Oct 17-22).
[60] J. Moskon, R. Dominko, R. Cerc-Korosec, M. Gaberscek, J. Jamnik, Journal of Power Sources, 174 (2007) 683-688.
[61] A. Yamada, S.-C. Chung, K. Hinokuma, Journal of the Electrochemical Society, 148 (2001) A224-A229.
[62] X. Yang, F. Mou, L. Zhang, G. Peng, Z. Dai, Z. Wen, Journal of Power Sources, 204 (2012) 182-186.
[63] S.-Y. Chung, J.T. Bloking, Y.-M. Chiang, Nature materials, 1 (2002) 123-128.
[64] D. Wang, H. Li, S. Shi, X. Huang, L. Chen, Electrochimica Acta, 50 (2005) 2955-2958.
[65] M. Abbate, S. Lala, L. Montoro, J. Rosolen, Electrochemical and Solid-State Letters, 8 (2005) A288-A290.
[66] C.S. Sun, Z. Zhou, Z.G. Xu, D.G. Wang, J.P. Wei, X.K. Bian, J. Yan, Journal of Power Sources, 193 (2009) 841-845.
[67] R. Amin, C. Lin, J. Maier, Physical Chemistry Chemical Physics, 10 (2008) 3519-3523.
[68] L. Li, X. Li, Z. Wang, L. Wu, J. Zheng, H. Guo, Journal of Physics and Chemistry of Solids, 70 (2009) 238-242.
[69] M. Takahashi, S.-i. Tobishima, K. Takei, Y. Sakurai, Solid State Ionics, 148 (2002) 283-289.
[70] T.-H. Teng, M.-R. Yang, S.-h. Wu, Y.-P. Chiang, Solid State Communications, 142 (2007) 389-392.
[71] H. Gao, L. Jiao, W. Peng, G. Liu, J. Yang, Q. Zhao, Z. Qi, Y. Si, Y. Wang, H. Yuan, Electrochimica Acta, 56 (2011) 9961-9967.
[72] Z. Yang, J. Xia, L. Zhi, W. Zhang, B. Pei, Ionics, 20 (2014) 169-174.
[73] M.-R. Yang, W.-H. Ke, Journal of the Electrochemical Society, 155 (2008) A729-A732.
[74] K.-F. Hsu, S.-Y. Tsay, B.-J. Hwang, Journal of Power Sources, 146 (2005) 529-533.
[75] J. Cho, Y.J. Kim, B. Park, Chemistry of Materials, 12 (2000) 3788-3791.
[76] L. Wang, X.F. Jie, G.C. Liang, X.Q. Ou, Advanced Materials Research, 347 (2012) 3443-3447.
[77] G.M. Koenig, J. Ma, B. Key, J. Fink, K.-B. Low, R. Shahbazian-Yassar, I. Belharouak, The Journal of Physical Chemistry C, 117 (2013) 21132-21138.
[78] H.-H. Chang, C.-C. Chang, C.-Y. Su, H.-C. Wu, M.-H. Yang, N.-L. Wu, Journal of Power Sources, 185 (2008) 466-472.
[79] F. Wu, M. Wang, Y. Su, S. Chen, B. Xu, Journal of Power Sources, 191 (2009) 628-632.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊