(3.215.180.226) 您好!臺灣時間:2021/03/09 03:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林彥余
研究生(外文):Yen-Yu Lin
論文名稱:奈米碳管及石墨烯奈米片對於碳纖維布環氧樹脂複合材料之機械行為的影響
論文名稱(外文):The Effects of Carbon Nanotubes and Graphene Nanoplatelets on the Mechanical Behavior of Carbon Fabric/Epoxy Composites
指導教授:曾信雄曾信雄引用關係
指導教授(外文):Shinn-Shyong Tzeng
口試委員:曾信雄
口試委員(外文):Shinn-Shyong Tzeng
口試日期:2014-07-30
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:60
中文關鍵詞:奈米碳管石墨烯奈米片複合材料協同效應
外文關鍵詞:carbon nanotubesgraphene nanoplateletscompositessynergistic effect
相關次數:
  • 被引用被引用:2
  • 點閱點閱:369
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:120
  • 收藏至我的研究室書目清單書目收藏:0
石墨烯與奈米碳管皆為非常受注目的新興材料,因為兩者皆具有非常優異的力學性質,熱傳導特性以及導電特性。本實驗透過添加奈米碳管、石墨烯奈米片以及混合奈米碳管和石墨烯奈米片與環氧樹脂製備成強化碳纖維布/環氧樹脂基複合材料,探討混合奈米碳管及石墨烯奈米片對複合材料機械性質與破壞行為之影響。其製程手法是藉由機械混合法混合奈米填料於環氧樹脂A劑當中,再與B劑攪拌均勻後,利用手積塗佈法以及真空袋熱壓成型法製成奈米填料強化碳纖維布/ 環氧樹脂基複合材料。並透過三點抗折測試、FESEM觀察其破斷面之形貌對於其複合材料所產生之影響。實驗結果顯示,添加奈米碳管0.5 wt%可以提升複材之彎曲強度約8.1%。這是因為添加奈米碳管可增強複材的層間剪應力,進一步提升複材的彎曲強度。在添加石墨烯奈米片方面,也可以有效提升複材之彎曲強度,當添加石墨烯奈米片在0.1wt%時,因為機械式混拌的效果,導致強化效果可以提升至15%,顯示添加石墨烯奈米片也可以增加基材與纖維束之間的界面強度,進一步提升複材的彎曲強度;當添加石墨烯奈米片至1.0wt%時,複材強度並無法獲得提升,是因為添加過量的石墨烯奈米片,應力會集中在石墨烯奈米片集中的區域使裂縫在此生成,造成複材強度下降。在添加混合奈米碳管及石墨烯奈米片方面,在0.5wt% CNT:M-25=5:5時,展現了協同效應,能夠有效的提升複材之彎曲強度至16.8%。
Graphene and carbon nanotubes(CNTs) are new materials which have attracted a lot of attention due to their excellent mechanical, electrical and thermal properties. CNT and/or graphene nanoplatelet(GNP)/carbon fiber(CF) fabric/epoxy three phase composites were fabricated by impregnating CF fabrics with the CNTs and/or GNPs dispersed epoxy solution. A nano-materials blending equipment was used to facilitate the dispersion of CNTs and/or GNPs. Then the hand lay-up and the vacuum bag hot pressing techniques were used to fabricate the composites. The effects of CNTs and GNPs on the mechanical properties and fracture behavior of three phase composites were investigated. The flexural strength and modulus were measured using three-point bending test and the fracture surfaces were observed using FE-SEM. Flexural strength of carbon fabric/epoxy resin composites were found to increase by 8.5% for 0.5wt% CNT addition. The enchanced flexural strength was due to the increased interlaminar shear strength resulted from the CNT addition. For GNPs, the loading of 0.1wt% was found to make a maximum increase of 15% in flexural strength. The enchanced flexural strength was due to the increased interface strength between matrix and fiber bundle resulted from the GNP addition. For the GNP loading of 1wt%, the flexural strength decreased due to the aggregation of GNPs. The synergistic effect was observed when nanofiller hybrids including CNTs and GNPs were used. Flexural strength of carbon fabric/epoxy resin composites were found to effectively increase by 16.8% for 0.5wt% hybrid with the ratio of 1:1.
中文摘要 i
英文摘要 iii
主目錄 v
圖目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 1
第二章 文獻回顧 3
2.1石墨烯簡介 4
2.2奈米碳管簡介 4
2. 3石墨烯奈米片對複合材料機械性質之影響 5
2. 4奈米碳管對複合材料機械性質之影響 7
2.5奈米碳管和石墨烯奈米片之協同效應對複合材料機械性質之影響 11
第三章 實驗 18
3.1 實驗材料 18
3.2實驗方法 19
3.2.1奈米碳材/環氧樹脂兩相複合材料之製備 19
3.2.2奈米碳材/碳纖維布/環氧樹脂三相複合材料之製備 19
3.3.1三點抗折測試 19
3.3.2短樑測試 21
3.3.3場發射掃描式電子顯微鏡觀測 21
第四章 結果與討論 25
4.1添加奈米碳管之碳纖維/環氧樹脂基複合材料 25
4.1.1彎曲強度及模數 25
4.1.2添加奈米碳管對於複合材料破壞行為之影響 25
4.2添加石墨烯奈米片之碳纖維/環氧樹脂基複合材料 30
4.2.1彎曲強度及模數 30
4.2.2添加石墨烯奈米片對於複合材料破壞行為之影響 32
4.3混合奈米碳管及石墨烯奈米片之碳纖維/環氧樹脂複合材料 34
4.3.1彎曲強度及模數的變化 34
4.3.2混合奈米碳管及石墨烯奈米片對於複合材料破壞行為之影響 37
4.4添加奈米碳管或石墨烯奈米片或混合奈米碳管及石墨烯奈米片在環氧樹脂中的分散情形 41
4.4.1添加石墨烯奈米片至環氧樹脂中的分散情形 42
4.4.2添加奈米碳管至環氧樹脂中的分散情形 44
4.4.3混合奈米碳管及石墨烯奈米片在環氧樹脂中的分散情形 46
4.5添加奈米碳材之短樑測試結果 49
第五章 結論 54
參考文獻 58
參考文獻
1.Achaby M. El, Qaiss A. Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes. Material and Design 44(2013):81-89.
2.Lamastra F.R., Puglia D., Monti M., Vella A., Peponi L. , Kenny J. M., Nanni F.. Poly(ε-caprolactone) reinforced with fibres of Poly(methyl methacrylate)loaded with multiwall carbon nanotubes or graphene nanoplatelets. Chemical Engineering Journal 195-196(2012):140-148.
3.Jiang Xian, T. Drzal Lawrence. Improving electrical conductivity and mechanical properties of high density polyethylene through incorporation of paraffin wax coated exfoliated graphene nanoplatelets and multi-wall carbon nano-tubes. Composites: Part A 42 (2011):1840-1849.
4.Min Kyoon Shin, Lee Bommy, Kim Shi Hyeong, Lee Jae Ah, M. Spinks Geoffrey, Gambhir Sanjeev, G. Wallace Gordon, E. Kozlov Mikhail, H. Baughman Ray & Kim Seon Jeong. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nature Communications: Published 31 Jan 2012.
5.Yang Shin-Yi, Lin Wei-Ning, Huang Yuan-Li, Tien Hsi-Wen, Wang Jeng-Yu, M. Ma Chen-Chi , Li Shin-Ming, Wang Yu-Sheng. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49 (2011):793-803.
6.Chatterjee S., Nafezarefi F., Tai N.H., Schlagenhauf L., Nuesch F.A., Chu B.T.T.. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon Volume 50, Issue 15, December 2012, Pages 5380–5386.
7.Geim AK, Novoselov KS. The rise of graphene. Nature Materials 2007; 6: 183-191.
8.Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008; 321: 385-388.
9.Du X, Skachko I, Barker A, Andrei EY. Approaching ballistic transport in suspended graphene. Nature Nanotechnology 2008; 3: 491-495.
10.Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science 2004; 306:666-669.
11.Lan KT, Hui D. The revolutionary creation of new advanced materials-carbon nanotube composites. Composites Part B 2002;33(4):263-277.
12.Yu MF, Files BS,Arepalli S, Ruoff RS. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical Review Letters 2000; 84 (24):5552-5555.
13.Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000; 290(5495): 1331-1334.
14.Bower C, Rosen R, Jin L, Han J, Zhou O. Deformation of carbon nanotubes in nanotube-polymer composites. Applied Physics Letters 1999; 74(22): 3317-3319.
15.Hone J. Phonons and thermal properties of carbon nanotubes. Topic in Appiled Physics 2001; 80: 273-286.
16.Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu CH, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. Crystalline Ropes of Metallic Carbon Nanotubes. Science 1996; 273(5274): 483-487.
17.Wildoer JWG, Vrnrma LC, Rinzler AG, Smalley RE, Dekker C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998; 391(6662): 59-62.
18.Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned Carbon Nanotube Arrays Formed By Cutting A Polymer Resin-Nanotube Composite. Science 1994; 265(5176): 1212-1214.
19.Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Electronic structure of chiral graphene tubules. Applied Physics Letters 1992; 60(18): 2204-2206.
20.Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993; 363(6430): 603-605.
21.Endo M. Grow Carbon- Fibers in the Vapor-Phase. CHEMTECH 1988; 18(9): 568-576.
22.Yang Xulin, Wang Zicheng, Xu Mingzhen, Zhao Rui, Liu Xiaobo. Dramatic mechanical and thermal increments of thermoplastic composites by multi-scale synergetic reinforcement:Carbon fiber and graphene nanoplatelet. Materials and Design 44 (2013) : 74-80.
23.Chatterjee S., Wang J.W., Kuo W.S., Tai N.H., Salzmann C., Li W.L., Hollertz R., Nuesch F.A., Chu B.T.T.. Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chemical Physics Letters 531 (2012) : 6-10.
24.Sanchez M., Campo M., Jimenez-Suarez A., Urena A.. Effect of the carbon nanotube functionalization on flezural properties of multiscale carbon fiber/epoxy composites manufactured by VARIM. Composites : Part B 45 (2013) : 1613-1619.
25.Kim M.T., Rhee K.Y., Lee J.H., Hui D., Lau Alan K.T.. Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes. composites : Part B 42 (2011) : 1257-1261.
26.Kim Ki-Seok, Rhee Kyong-Yop, Lee Kyu-Hwan, Byun Joon-Hyung, Park Soo-Jin. Rheological behaviors and mechanical properties of graphite nanoplatecarbon nanotube-filled epoxy nanocomposites. Journal of Industrial and Engineering Chemistry 16 (2010) 572-576.
27.Wang Ranran, Sun Jing, Gao Lian, Xu Chaohe, and Zhang Jing. Fibrous nanocomposites of carbon nanotubes and graphene-oxide with synergetic mechanical and actuative performance. Chem. Commun (2011) 47; 8650-8652.
28.Li C.Y., Chou T-W.. Modeling of Damage Sening in Fiber Composites Using Nanotube Networks. Composites Science and Technology 2008:68; 3373-3379.
29.A. King Julia, R. Klimek Danielle, Miskioglu Ibrahim, M. Odegard Greg. Mechanical Properties of Graphene Nanoplatelet/Epoxy Composites. Applied Polymer Science : 2013:128; 4217-4223.
30.Zhao Xin, Zhang Qinghua, Chen Dajun. Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites. Macromolecules 2010, 43 ; 2357-2363.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔