(3.237.97.64) 您好!臺灣時間:2021/03/04 15:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:馮冠文
研究生(外文):Kuan-Wen Fong
論文名稱:石墨烯/碳纖維/基材三相複合材料製備與性質研究
論文名稱(外文):Preparation and Properties of Graphene/Carbon Fiber/Matrix Three-Phase Composites
指導教授:曾信雄曾信雄引用關係
指導教授(外文):Shinn-Shyong Tzeng
口試委員:曾信雄
口試委員(外文):Shinn-Shyong Tzeng
口試日期:2014-07-30
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:133
中文關鍵詞:機械性質複合材料石墨烯
外文關鍵詞:mechanical propeertiescompositesgraphene
相關次數:
  • 被引用被引用:3
  • 點閱點閱:375
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:139
  • 收藏至我的研究室書目清單書目收藏:0
在傳統的積層複合材料中,破壞往往與基材的損傷、界面鍵結、纖維本身強度以及層間剪強度脫不了關係,當複合材料破壞時,往往有兩個以上的破壞因素存在於複合材料中,本研究針對添加奈米碳材之複合材料受力時造成的破壞行為與破壞因素對機械性質的關聯性進行探討。首先將天然石墨利用哈默法(Hummers’ method)製備氧化石墨後分別以熱膨脹剝離與液相剝離法製備氧化石墨微片,對產物進行分析檢測比較後導入纖維強化複合材料中,並與Angstron Materials, Inc.所生產的石墨烯進行抗折強度、模數、層間剪強度等機械性質的比較,觀察兩者的微觀影像,分析複合材料的破壞與強化機制,並與添加奈米碳管之纖維強化複合材料比較機械性質與破壞強化機制,最後利用奈米碳材/環氧樹脂兩相複合材料觀察石墨烯或氧化石墨烯與環氧基材的相互影響。
實驗結果顯示,以熱剝離法與液相製備法皆能將氧化石墨製備為更薄的微片(分別稱為H-GONP及L-GONP),製備結果各有優劣,以熱剝離法製備會令表面無含氧官能基,而以液相剝離法容易有界面活性劑殘留,不使用界面活性劑難以將氧化石墨剝離成更薄的氧化石墨微片。在複合材料檢測結果中,三相複合材料的三點抗折強度僅在添加0.5 wt%石墨烯於丙酮中超音波震盪所製備的環氧基複合材料的結果較佳,其抗折強度提升了18 %,添加自製的H-GONP與L-GONP則無法達到預期效果,前者是由於添加物團聚,後者則是在基材與纖維間的裂縫成長、添加物本身的界面鍵結等諸多因素相互影響下所致。而添加0.5 wt%的添加物製備兩相環氧樹脂複合材料的三點抗折結果以及利用短樑試驗檢測層間剪強度皆無顯著改變。利用SEM對兩相複合材料、三相複合材料以及短樑試驗的破斷面進行微觀分析,剖析複合材料中不同的破壞行為所造成的破壞形貌,並探討石墨烯與氧化石墨微片在複合材料中的影響。
The damage in the conventional laminated composites were related with the defect of matrix, the interfacial bond, the strength of fiber and the interlaminar shear strength. Two or more factors were often observed when the laminated composites fracture. In this study, we investigated the fracture behaviors and their relationship with the mechanical properties for the laminated composites with the addition of carbon nanofillers. Two types of graphene oxide nanoplatelets (GONPs), produced using liquid-phase exfoliation in surfactant/water solution and using thermal exfoliation from the graphite oxide by Hummers’ method using the natural graphite, and one commercially available graphene nanoplatelet (GNP) from Angstron Materials, Inc. were used as the carbon nanofillers. The flexural properties and the interlaminar shear strength (ILSS) of the composites were measured, the fracture surfaces were observed, and the fracture behavior and mechanisms were analyzed, which were also compared with these of composites with carbon nanotube addition. In addition to carbon nanofiller/carbon fiber/epoxy three-phase composites, the fracture behavior of carbon nanofiller/epoxy two-phase composites was studied to further elucidate the interaction between carbon nanofiller and epoxy matrix.
Experimental results indicated that the thinner GONPs can be produced from the graphite oxide using both thermal exfoliation (called H-GONP) and liquid exfoliation (called L-GONP). However, the oxygen functional group will be removed using thermal exfoliation, and the surfactant will remain in the L-GONP using liquid exfoliation. Flexural strength measurements showed an 18% increase for a 0.5 wt% GNP addition in three-phase composites. However, no strength enhancement was found when H-GONPs and L-GONPs were adopted. The reasons were attributed to the aggregation of H-GONPs, and to the interaction among carbon fibers, carbon nanofillers and the epoxy matrix when L-GONPs were used. No obvious change in the ILSS was also measured. For the two-phase composites with an addition of 0.5 wt% GNP, the flexural strength also remained relatively constant. The fracture surfaces of both two-phase and three-phase composites after both flexural tests and short beam shear tests were observed using FE-SEM, and the fracture behavior and mechanisms were discussed.
中文摘要 I
Abstract III
主目錄 V
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1石墨烯 3
2.1.1簡述石墨烯 3
2.1.2石墨烯的製造方法 4
2.1.2.1 Bottom-Up Graphene Processes 4
2.1.2.2 Top-Down Graphene Processes 5
2.1.2.2.1 純石墨類製造 5
2.1.2.2.2 石墨衍生物製造 6
2.2強化材 14
2.3基材 16
2.3.1酚醛樹脂 17
2.3.2環氧樹脂 17
2.4複合材料的破壞與強化機制 24
2.5石墨烯強化高分子基複合材料 28
2.6石墨烯/碳纖維強化高分子基複合材料 40
第三章 實驗材料、方法與步驟 46
3.1氧化石墨微片製備 46
3.1.1實驗材料與設備 46
3.1.2實驗步驟 46
3.1.2.1氧化石墨製備 46
3.1.2.2液相製備 46
3.1.2.3熱剝離製備 47
3.2複合材料製備 49
3.2.1實驗材料與設備 49
3.2.2實驗步驟 52
3.2.2.1奈米碳材/碳纖維/酚醛基複合材料製作程序 52
3.2.2.2奈米碳材/碳纖維/環氧基複合材料製作程序 52
3.2.2.3奈米碳材/環氧基複合材料製作程序 53
3.3實驗參數 56
3.4性質測試 58
3.4.1 X-ray Diffracation分析 58
3.4.2重量損失率量測 58
3.4.3傅利葉紅外線光譜(FT-IR)分析 58
3.4.4原子力顯微鏡(AFM)分析 59
3.4.5三點抗折強度與模數 60
3.4.6短樑測試 61
3.4.7場發射掃描式電子顯微鏡(FE-SEM)觀測 61
3.4.8粒徑分析 62
第四章 結果與討論 63
4.1氧化石墨微片製備 63
4.1.1低溫氧化區段對氧化石墨影響 63
4.1.2液相製備氧化石墨微片 65
4.1.3熱剝離製備氧化石墨微片 66
4.1.3.1重量損失 66
4.1.3.2 XRD分析 67
4.1.3.3 FT-IR分析 68
4.1.3.4 AFM分析 68
4.1.3.5 SEM分析 69
4.2碳纖維強化高分子基複合材料 78
4.2.1奈米碳材/碳纖維/酚醛基複合材料之抗折強度與模數 78
4.2.2奈米碳材/碳纖維/環氧基複合材料之抗折強度與模數 79
4.2.2.1利用混拌法製備 79
4.2.2.2利用超音波震盪法製備 81
4.2.3添加奈米碳材料的破壞與強化機制 85
4.2.4環氧基複合材料之短樑試驗 107
4.3高分子基複合材料 114
4.3.1奈米碳材料/環氧樹脂複合材料三點抗折試驗 114
4.3.2奈米碳材料/環氧樹脂複合材料分散性與破壞機制 115
4.3.2.1純相環氧樹脂 115
4.3.2.石墨烯/環氧樹脂複合材料 116
4.3.3氧化石墨微片/環氧樹脂複合材料 119
第五章 結論 126
參考文獻 128
[1]Kim H, Abdala AA, Macosko CW. Graphene/Polymer Nanocomposites. Macromolecules 2010; 43: 6515-6530.
[2]Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: Past, present and future. Progress in Materials Science 2011; 56: 1178-1271.
[3]Ubbelohde AR, Lewis LA. Graphite and its crystal compounds. London: Oxford University Press; 1960.
[4]Thompson TE, Falardeau ER, Hanlon LR. The electrical conductivity and optical reflectance of graphite–SbF5 compounds. Carbon 1977; 15: 39-43.
[5]Eizenberg M, Blakely J M. Carbon Monolayer Phase Condensation on Ni(111). Surface Science 1979; 82: 228-236.
[6]Geim AK, Novoselov KS. The rise of graphene. Nature Materials 2007; 6: 183-191.
[7]Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. C60: Buckminsterfullerene. Nature 1985; 318: 162-163.
[8]Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354: 56-58.
[9]Meyer J, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S. The structure of suspended graphene sheets. Nature 2007; 446: 60-73.
[10]Slonczewski JC, Weiss PR. Band structure of graphite. Physical Review 1958; 109: 272.
[11]Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005; 438: 197-200.
[12]Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science 2004; 306: 666-669.
[13]Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Letters 2008; 8: 902-907.
[14]Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008; 321: 385-388.
[15]Geim AK. Graphene:Status and Prospects. Science 2009; 324: 1530-1534.
[16]Wang X, You H, Liu F, Li M, Wan L, Li S, Li Q, Xu Y, Tian R, Yu Z, Xiang D, Cheng J. Large-Scale Synthesis of Few-Layered Graphene using CVD. Chemical Vapor Deposition 2009; 15: 53-56
[17]Wang Y, Chen X, Zhong Y, Zhu F, Loh KP. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Applied Physics Letters 2009; 95: 063302/1-3.
[18]Chae SJ, Gunes F, Kim KK, Kim ES, Han GH, Kim SM, Shin HJ, Yoon SM, Choi JY, Park MH, Yang CW, Pribat D, Lee YH. Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation. Advanced Materials 2009; 21: 2328-2333.
[19]Yuan GD, Zhang WJ, Yang Y, Tang YB, Li YQ, Wang JX, Meng XM, He ZB, Wu CML, Bello I, Lee CS, Lee ST. Graphene sheets via microwave chemical vapor deposition. Chemical Physics Letters 2009; 467: 361-364.
[20]Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters 2009; 9(1): 30-35.
[21]Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 2010; 48: 255-259.
[22]Karmakar S, Kulkarni NV, Nawale AB, Lalla NP, Mishra R, Sathe VG, Bhoraskar SV, Das AK. A novel approach towards selective bulk synthesis of few-layer graphenes in an electric arc. Journal of Physics D: Applied Physics 2009; 42: 115201/1-14.
[23]Wu C, Dong G, Guan L. Production of graphene sheets by a simple helium arc-discharge. Physica E 2010; 42: 1267-1271.
[24]Shen B, Ding J, Yan X, Feng W, Li J, Xue Q. Influence of different buffer gases on synthesis of few-layered graphene by arc discharge method. Applied Surface Science 2012; 258: 4523-4531.
[25]Forbeaux I, Themlin JM, Debever JM. Heteroepitaxial graphite on 6H–SiC(0001): interface formation through conduction-band electronic structure. Physical Review B 1998; 58: 16396-16406.
[26]Varchon F, Feng R, Hass J, Li X, Nguyen BN, Naud C, Mallet P, Veuillen JY, Berger C, Conrad EH, Magaud L. Electronic structure of epitaxial graphene layers on SiC: effect of the substrate. Physical Review Letters 2007; 99: 126805/1-4.
[27]Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials 2009; 8: 203-207.
[28]Ruammaitree A, Nakahara H, Saito Y. Growth of non-concentric graphene ring on 6H-SiC (0001) surface. Applied Surface Science 2014; 307: 136-141.
[29]Yakimova R, Iakimov T, Yazdi GR, Bouhafs C, Eriksson J, Zakharov A, Boosalis A, Schubert M, Darakchieva V. Morphological and electronic properties of epitaxial graphene on SiC. Physica B 2014; 439: 54-59.
[30]Kim CD, Min BK, Jung WS. Preparation of graphene sheets by the reduction of carbon monoxide. Carbon 2009; 47: 1610-1612.
[31]Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009; 458: 872-876.
[32]Jiao L, Zhang L, Wang X, Diankov G, Dai H. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009; 458: 877-880.
[33]Mohammadi S, Kolahdouz Z, Darbari S, Mohajerzadeh S, Masoumi N. Graphene formation by unzipping carbon nanotubes using a sequential plasma assisted processing. Carbon 2013; 52: 451-463.
[34]Zhang W, Cui J, Tao CA, Wu Y, Li Z, Ma L, Wen Y, Li G. A Strategy for Producing Pure Single-Layer Graphene Sheets Based on a Confined Self-Assembly Approach. Angewandte Chemie International Edition 2009; 48: 5864-5868.
[35]Hiramatsu M, Shiji K, Amano H, Hori M. Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Appl. Phys. Lett. 2004; 84(23): 4708-4710.
[36]Chuang AT, Boskovic BO, Robertson J. Freestanding carbon nanowalls by microwave plasma-enhanced chemical vapour deposition. Diamond & Related Materials 2006; 15: 1103-1106.
[37]Hiramatsu M, Naito M, Kondo H, Hori M. Fabrication of Graphene-Based Films Using Microwave-Plasma-Enhanced Chemical Vapor Deposition. Jpn. J. Appl. Phys. 2013; 52: 01AK04/1-5.
[38]Yamada T, Ishihara M, Kim J, Hasegawa M, Iijima S. A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature. Carbon 2012; 50: 2615-2619.
[39]Terasawa T, Saiki K. Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon 2012; 50: 869-874.
[40]Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK. Liquid-Phase Exfoliation of Graphite Towards Solubilized Graphenes. Small 2009; 5: 1841-1845.
[41]Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 2008; 3: 563-568.
[42]Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society 2009; 131: 3611-3620.
[43]Alaferdov AV, Gholamipour-Shirazi A, Canesqui MA, Danilov YA, Moshkalev SA. Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite. Carbon 2014; 69: 525-535.
[44]Green AA, Hersam MC. Solution phase production of graphene with controlled thickness via density differentiation. Nano Letters 2009; 9: 4031-4036.
[45]Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J. One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid- Functionalized Graphene Sheets Directly from Graphite. Advanced Functional Materials 2008; 18: 1518-1525.
[46]Behabtu N, Lomeda JR, Green MJ, Higginbotham AL, Sinitskii A, Kosynkin DV, Tsentalovich D, Parra-Vasquez ANG, Schmidt J, Kesselman E, Cohen Y, Talmon Y, Tour JM, Pasquali M. Spontaneous high-concentration dispersions and liquid crystals of graphene. Nature Nanotechnology 2010; 5: 406-411.
[47]Carr KE. Intercalation and oxidation effects on graphite of a mixture of sulphuric and nitric acids. Carbon 1970; 8: 155-166.
[48]Celzard A, Mareche JF, Furdin G. Surface area of compressed expanded graphite. Carbon 2002; 40: 2713-2718.
[49]Viculis LM, Mack JJ, Mayer OM, Hahn OT, Kaner RB. Intercalation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem. 2005; 15: 974-978.
[50]Brodie BC. On the Atomic Weight of Graphite. Philosophical Transactions of the Royal Society of London. 1859; 149: 249.
[51]Hummers WS, Offeman RE. Preparation of graphite oxide. Journal of the American Chemical Society 1958; 80: 1339.
[52]傅玲,劉洪波,鄒艷紅,李波,Hummers法製備氧化石墨時影響氧化程度的工藝因素研究,炭素2005; 4: 10-14。
[53]黃橋,孫紅娟,楊勇輝,氧化石墨的譜學表徵與分析,無機化學學報 2011; 27: 1721-1726。
[54]Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 2008; 3: 101-105.
[55]Wei GAO. Graphite Oxide: Structure, Reduction and Application. 2012.
[56]楊勇輝,孫紅娟,彭同江,石墨烯的氧化還原法製備及結構表徵,無機化學學報 2010; 26: 2083-2090。
[57]Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud'homme RK, Car R, Saville DA, Aksay IA. Functionalized single graphene sheets derived from splitting graphite oxide. Journal of Physical Chemistry B 2006; 110: 8535-8539.
[58]McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials 2007; 19: 4396-4404.
[59]劉曉文,黃雪梅,華燕莉,趙皇,高海青,熱膨脹剝離法製備石墨烯及其表徵,非金屬礦 2013; 36: 23-25。
[60]Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007; 45: 1558-1565.
[61]Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KA, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphene-based composite materials. Nature 2006; 442: 282-286.
[62]Si Y, Samulskl ET. Synthesis of Water Soluble Graphene. Nano Letters 2008; 8:1679-1682.
[63]Bourlinos AB, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I. Graphite oxide: chemical reduction to graphite and surface modification with aliphatic amines and amino acids. Langmuir 2003; 19: 6050-6055.
[64]Loryuenyoug V, Totepvimarn K, Eimburanapravat P, Boonchompoo W, Buasri A. Preparation and Characterization of Reduced Graphene Oxide Sheets via Water-Based Exfoliation and Reduction Methods. Advences in Materials Science and Engineering 2013; 2013: 1-5.
[65]稻垣道夫,大谷杉郎,大谷朝男共著,賴耿陽譯,碳材料碳纖維工學,復漢出版社 1994。
[66]Savage G. Carbon-Carbon Composites. Chapnnon and Hall 1933.
[67]沈銘原著,熱塑性複合材料預浸材加工技術簡介,財團法人塑膠工業技術發展中心季刊 2012; 29: 11-20。
[68]Yamashita Y, Ouchi K. A study on carbonization of phenol-formaldehyde resin labelled with deuterium and 13C. Carbon 1981; 19: 89-94.
[69]Trick KA, Saliba TE. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 1995; 33: 1509-1515.
[70]Chen XM, Ellis B. Chemistry and Technology of Epoxy Resins. Chapman and Hall 1993.
[71]垣內弘著,賴耿陽譯,環氧樹脂應用實務,復漢出版社 1992。
[72]張聖雄,醚醯胺化聚脂肪二酸增韌改質環氧樹脂之研究,國立高雄大學化學工程及材料工程學系,碩士論文,2014。
[73]Askeland DR, Phule PP. The Science and Engineering of Materials, 4th ed. 歐亞出版社 2009。
[74]吳人潔,複合材料界面與其力學性能的關係,力學進展 1981; 11: 129-137。
[75]Mallick PK. Fiber-Reinforced Composite, 3rd ed. Taylor & Francis Group 2007.
[76]Zhao X, Zhang Q, Chen D. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 2010; 43: 2357-2363.
[77]Yang SY, Lin WN, Huang YL, Tien HW, Wang JY, Ma CCM, Li SM, Wang YS. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 2011; 49: 793-803.
[78]Shen XJ, Liu Y, Xiao HM, Feng QP, Yu ZZ, Fu SY. The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins. Composites Science and Technology 2012; 72: 1581–1587.
[79]Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. Nano 2009; 3: 3884-3890.
[80]Rafiee M, Rafiee J, Srivastava L, Wang Z, Song H, Yu ZZ, Koratkar N. Fracture and Fatigue in Graphene Nanocomposites. Small 2010; 6: 179-183.
[81]Bortz DR, Heras EG, Martin-Gullon I. Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites. Macromolecules 2012; 45: 238-245.
[82]Morimune S, Nishino T, Goto T. Ecological Approach to Graphene Oxide Reinforced Poly (methyl methacrylate) Nanocomposites. Appl. Mater. Interfaces 2012; 4: 3596-3601.
[83]Morimune S, Kotera M, Nishino T, Goto T. Uniaxial drawing of poly(vinyl alcohol)/graphene oxide nanocomposites. Carbon 2014; 70: 38-45.
[84]Dzenis YA. Structural nanocomposites. Science 2008; 319: 419-420.
[85]Yavari F, Rafiee MA, Rafiee J, Yu ZZ, Koratkar N. Dramatic Increase in Fatigue Life in Hierarchical Graphene Composites. Appl. Mater. Interfaces 2010; 2: 2738-2743.
[86]劉燕珍,李永鋒,楊永崗,溫月芳,王茂章,石墨烯/酚醛樹脂/碳纖維層次複合材料的製備及其性能。新型碳材料 2012; 27: 377-384.
[87]Yang X, Wang Z, Xu M, Zhao R, Liu X. Dramatic mechanical and thermal increments of thermoplastic composites by multi-scale synergetic reinforcement: Carbon fiber and graphene nanoplatelet. Materials and Design 2013; 44: 74-80.
[88]王子瑜,曹恒光,布朗運動、郎之萬方程式、與布朗動力學,物理雙月刊 2005; 27: 456-460.
[89]Wang S, Yu D, Dai L, Chang DW, Baek JB. Polyelectrolyte-Functionalized Graphene as Metal-Free Electrocatalysts for Oxygen Reduction. ACS Nano 2011; 5: 6202-6209.
[90]陳欣嶸,官能化氧化石墨與聚丙烯奈米複材製備:不同介面活性劑效應,東海大學化學工程與材料工程研究所,碩士論文,2013。
[91]Chin IJ, Lee SC, Quan S. Preparation and characterization of surfactant-induced nanoporous PMMA film. Journal of Industrial and Engineering Chemistry 2009; 15:136-140.
[92]林育宏,於酚醛基與碳基複合材料中導入奈米碳管或奈米碳纖維之機械性質研究,大同大學材料工程研究所,博士論文,2012。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔