[1]Kim H, Abdala AA, Macosko CW. Graphene/Polymer Nanocomposites. Macromolecules 2010; 43: 6515-6530.
[2]Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: Past, present and future. Progress in Materials Science 2011; 56: 1178-1271.
[3]Ubbelohde AR, Lewis LA. Graphite and its crystal compounds. London: Oxford University Press; 1960.
[4]Thompson TE, Falardeau ER, Hanlon LR. The electrical conductivity and optical reflectance of graphite–SbF5 compounds. Carbon 1977; 15: 39-43.
[5]Eizenberg M, Blakely J M. Carbon Monolayer Phase Condensation on Ni(111). Surface Science 1979; 82: 228-236.
[6]Geim AK, Novoselov KS. The rise of graphene. Nature Materials 2007; 6: 183-191.
[7]Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. C60: Buckminsterfullerene. Nature 1985; 318: 162-163.
[8]Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354: 56-58.
[9]Meyer J, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S. The structure of suspended graphene sheets. Nature 2007; 446: 60-73.
[10]Slonczewski JC, Weiss PR. Band structure of graphite. Physical Review 1958; 109: 272.
[11]Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005; 438: 197-200.
[12]Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science 2004; 306: 666-669.
[13]Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Letters 2008; 8: 902-907.
[14]Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008; 321: 385-388.
[15]Geim AK. Graphene:Status and Prospects. Science 2009; 324: 1530-1534.
[16]Wang X, You H, Liu F, Li M, Wan L, Li S, Li Q, Xu Y, Tian R, Yu Z, Xiang D, Cheng J. Large-Scale Synthesis of Few-Layered Graphene using CVD. Chemical Vapor Deposition 2009; 15: 53-56
[17]Wang Y, Chen X, Zhong Y, Zhu F, Loh KP. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Applied Physics Letters 2009; 95: 063302/1-3.
[18]Chae SJ, Gunes F, Kim KK, Kim ES, Han GH, Kim SM, Shin HJ, Yoon SM, Choi JY, Park MH, Yang CW, Pribat D, Lee YH. Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation. Advanced Materials 2009; 21: 2328-2333.
[19]Yuan GD, Zhang WJ, Yang Y, Tang YB, Li YQ, Wang JX, Meng XM, He ZB, Wu CML, Bello I, Lee CS, Lee ST. Graphene sheets via microwave chemical vapor deposition. Chemical Physics Letters 2009; 467: 361-364.
[20]Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters 2009; 9(1): 30-35.
[21]Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 2010; 48: 255-259.
[22]Karmakar S, Kulkarni NV, Nawale AB, Lalla NP, Mishra R, Sathe VG, Bhoraskar SV, Das AK. A novel approach towards selective bulk synthesis of few-layer graphenes in an electric arc. Journal of Physics D: Applied Physics 2009; 42: 115201/1-14.
[23]Wu C, Dong G, Guan L. Production of graphene sheets by a simple helium arc-discharge. Physica E 2010; 42: 1267-1271.
[24]Shen B, Ding J, Yan X, Feng W, Li J, Xue Q. Influence of different buffer gases on synthesis of few-layered graphene by arc discharge method. Applied Surface Science 2012; 258: 4523-4531.
[25]Forbeaux I, Themlin JM, Debever JM. Heteroepitaxial graphite on 6H–SiC(0001): interface formation through conduction-band electronic structure. Physical Review B 1998; 58: 16396-16406.
[26]Varchon F, Feng R, Hass J, Li X, Nguyen BN, Naud C, Mallet P, Veuillen JY, Berger C, Conrad EH, Magaud L. Electronic structure of epitaxial graphene layers on SiC: effect of the substrate. Physical Review Letters 2007; 99: 126805/1-4.
[27]Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials 2009; 8: 203-207.
[28]Ruammaitree A, Nakahara H, Saito Y. Growth of non-concentric graphene ring on 6H-SiC (0001) surface. Applied Surface Science 2014; 307: 136-141.
[29]Yakimova R, Iakimov T, Yazdi GR, Bouhafs C, Eriksson J, Zakharov A, Boosalis A, Schubert M, Darakchieva V. Morphological and electronic properties of epitaxial graphene on SiC. Physica B 2014; 439: 54-59.
[30]Kim CD, Min BK, Jung WS. Preparation of graphene sheets by the reduction of carbon monoxide. Carbon 2009; 47: 1610-1612.
[31]Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009; 458: 872-876.
[32]Jiao L, Zhang L, Wang X, Diankov G, Dai H. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009; 458: 877-880.
[33]Mohammadi S, Kolahdouz Z, Darbari S, Mohajerzadeh S, Masoumi N. Graphene formation by unzipping carbon nanotubes using a sequential plasma assisted processing. Carbon 2013; 52: 451-463.
[34]Zhang W, Cui J, Tao CA, Wu Y, Li Z, Ma L, Wen Y, Li G. A Strategy for Producing Pure Single-Layer Graphene Sheets Based on a Confined Self-Assembly Approach. Angewandte Chemie International Edition 2009; 48: 5864-5868.
[35]Hiramatsu M, Shiji K, Amano H, Hori M. Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Appl. Phys. Lett. 2004; 84(23): 4708-4710.
[36]Chuang AT, Boskovic BO, Robertson J. Freestanding carbon nanowalls by microwave plasma-enhanced chemical vapour deposition. Diamond & Related Materials 2006; 15: 1103-1106.
[37]Hiramatsu M, Naito M, Kondo H, Hori M. Fabrication of Graphene-Based Films Using Microwave-Plasma-Enhanced Chemical Vapor Deposition. Jpn. J. Appl. Phys. 2013; 52: 01AK04/1-5.
[38]Yamada T, Ishihara M, Kim J, Hasegawa M, Iijima S. A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature. Carbon 2012; 50: 2615-2619.
[39]Terasawa T, Saiki K. Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon 2012; 50: 869-874.
[40]Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK. Liquid-Phase Exfoliation of Graphite Towards Solubilized Graphenes. Small 2009; 5: 1841-1845.
[41]Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 2008; 3: 563-568.
[42]Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society 2009; 131: 3611-3620.
[43]Alaferdov AV, Gholamipour-Shirazi A, Canesqui MA, Danilov YA, Moshkalev SA. Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite. Carbon 2014; 69: 525-535.
[44]Green AA, Hersam MC. Solution phase production of graphene with controlled thickness via density differentiation. Nano Letters 2009; 9: 4031-4036.
[45]Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J. One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid- Functionalized Graphene Sheets Directly from Graphite. Advanced Functional Materials 2008; 18: 1518-1525.
[46]Behabtu N, Lomeda JR, Green MJ, Higginbotham AL, Sinitskii A, Kosynkin DV, Tsentalovich D, Parra-Vasquez ANG, Schmidt J, Kesselman E, Cohen Y, Talmon Y, Tour JM, Pasquali M. Spontaneous high-concentration dispersions and liquid crystals of graphene. Nature Nanotechnology 2010; 5: 406-411.
[47]Carr KE. Intercalation and oxidation effects on graphite of a mixture of sulphuric and nitric acids. Carbon 1970; 8: 155-166.
[48]Celzard A, Mareche JF, Furdin G. Surface area of compressed expanded graphite. Carbon 2002; 40: 2713-2718.
[49]Viculis LM, Mack JJ, Mayer OM, Hahn OT, Kaner RB. Intercalation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem. 2005; 15: 974-978.
[50]Brodie BC. On the Atomic Weight of Graphite. Philosophical Transactions of the Royal Society of London. 1859; 149: 249.
[51]Hummers WS, Offeman RE. Preparation of graphite oxide. Journal of the American Chemical Society 1958; 80: 1339.
[52]傅玲,劉洪波,鄒艷紅,李波,Hummers法製備氧化石墨時影響氧化程度的工藝因素研究,炭素2005; 4: 10-14。
[53]黃橋,孫紅娟,楊勇輝,氧化石墨的譜學表徵與分析,無機化學學報 2011; 27: 1721-1726。
[54]Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 2008; 3: 101-105.
[55]Wei GAO. Graphite Oxide: Structure, Reduction and Application. 2012.
[56]楊勇輝,孫紅娟,彭同江,石墨烯的氧化還原法製備及結構表徵,無機化學學報 2010; 26: 2083-2090。
[57]Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud'homme RK, Car R, Saville DA, Aksay IA. Functionalized single graphene sheets derived from splitting graphite oxide. Journal of Physical Chemistry B 2006; 110: 8535-8539.
[58]McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials 2007; 19: 4396-4404.
[59]劉曉文,黃雪梅,華燕莉,趙皇,高海青,熱膨脹剝離法製備石墨烯及其表徵,非金屬礦 2013; 36: 23-25。
[60]Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007; 45: 1558-1565.
[61]Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KA, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphene-based composite materials. Nature 2006; 442: 282-286.
[62]Si Y, Samulskl ET. Synthesis of Water Soluble Graphene. Nano Letters 2008; 8:1679-1682.
[63]Bourlinos AB, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I. Graphite oxide: chemical reduction to graphite and surface modification with aliphatic amines and amino acids. Langmuir 2003; 19: 6050-6055.
[64]Loryuenyoug V, Totepvimarn K, Eimburanapravat P, Boonchompoo W, Buasri A. Preparation and Characterization of Reduced Graphene Oxide Sheets via Water-Based Exfoliation and Reduction Methods. Advences in Materials Science and Engineering 2013; 2013: 1-5.
[65]稻垣道夫,大谷杉郎,大谷朝男共著,賴耿陽譯,碳材料碳纖維工學,復漢出版社 1994。
[66]Savage G. Carbon-Carbon Composites. Chapnnon and Hall 1933.
[67]沈銘原著,熱塑性複合材料預浸材加工技術簡介,財團法人塑膠工業技術發展中心季刊 2012; 29: 11-20。
[68]Yamashita Y, Ouchi K. A study on carbonization of phenol-formaldehyde resin labelled with deuterium and 13C. Carbon 1981; 19: 89-94.
[69]Trick KA, Saliba TE. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 1995; 33: 1509-1515.
[70]Chen XM, Ellis B. Chemistry and Technology of Epoxy Resins. Chapman and Hall 1993.
[71]垣內弘著,賴耿陽譯,環氧樹脂應用實務,復漢出版社 1992。
[72]張聖雄,醚醯胺化聚脂肪二酸增韌改質環氧樹脂之研究,國立高雄大學化學工程及材料工程學系,碩士論文,2014。
[73]Askeland DR, Phule PP. The Science and Engineering of Materials, 4th ed. 歐亞出版社 2009。
[74]吳人潔,複合材料界面與其力學性能的關係,力學進展 1981; 11: 129-137。
[75]Mallick PK. Fiber-Reinforced Composite, 3rd ed. Taylor & Francis Group 2007.
[76]Zhao X, Zhang Q, Chen D. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 2010; 43: 2357-2363.
[77]Yang SY, Lin WN, Huang YL, Tien HW, Wang JY, Ma CCM, Li SM, Wang YS. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 2011; 49: 793-803.
[78]Shen XJ, Liu Y, Xiao HM, Feng QP, Yu ZZ, Fu SY. The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins. Composites Science and Technology 2012; 72: 1581–1587.
[79]Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. Nano 2009; 3: 3884-3890.
[80]Rafiee M, Rafiee J, Srivastava L, Wang Z, Song H, Yu ZZ, Koratkar N. Fracture and Fatigue in Graphene Nanocomposites. Small 2010; 6: 179-183.
[81]Bortz DR, Heras EG, Martin-Gullon I. Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites. Macromolecules 2012; 45: 238-245.
[82]Morimune S, Nishino T, Goto T. Ecological Approach to Graphene Oxide Reinforced Poly (methyl methacrylate) Nanocomposites. Appl. Mater. Interfaces 2012; 4: 3596-3601.
[83]Morimune S, Kotera M, Nishino T, Goto T. Uniaxial drawing of poly(vinyl alcohol)/graphene oxide nanocomposites. Carbon 2014; 70: 38-45.
[84]Dzenis YA. Structural nanocomposites. Science 2008; 319: 419-420.
[85]Yavari F, Rafiee MA, Rafiee J, Yu ZZ, Koratkar N. Dramatic Increase in Fatigue Life in Hierarchical Graphene Composites. Appl. Mater. Interfaces 2010; 2: 2738-2743.
[86]劉燕珍,李永鋒,楊永崗,溫月芳,王茂章,石墨烯/酚醛樹脂/碳纖維層次複合材料的製備及其性能。新型碳材料 2012; 27: 377-384.
[87]Yang X, Wang Z, Xu M, Zhao R, Liu X. Dramatic mechanical and thermal increments of thermoplastic composites by multi-scale synergetic reinforcement: Carbon fiber and graphene nanoplatelet. Materials and Design 2013; 44: 74-80.
[88]王子瑜,曹恒光,布朗運動、郎之萬方程式、與布朗動力學,物理雙月刊 2005; 27: 456-460.[89]Wang S, Yu D, Dai L, Chang DW, Baek JB. Polyelectrolyte-Functionalized Graphene as Metal-Free Electrocatalysts for Oxygen Reduction. ACS Nano 2011; 5: 6202-6209.
[90]陳欣嶸,官能化氧化石墨與聚丙烯奈米複材製備:不同介面活性劑效應,東海大學化學工程與材料工程研究所,碩士論文,2013。[91]Chin IJ, Lee SC, Quan S. Preparation and characterization of surfactant-induced nanoporous PMMA film. Journal of Industrial and Engineering Chemistry 2009; 15:136-140.
[92]林育宏,於酚醛基與碳基複合材料中導入奈米碳管或奈米碳纖維之機械性質研究,大同大學材料工程研究所,博士論文,2012。