(54.236.58.220) 您好!臺灣時間:2021/03/01 00:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李瓚
研究生(外文):Tsan Lee
論文名稱:(P2O5,B2O3)-ZnO-V2O5玻璃之光吸收特性
論文名稱(外文):Optical absorption characteristic of (P2O5, B2O3)-ZnO-V2O5 glasses
指導教授:徐錦志
指導教授(外文):Jiin-Jyh Shyu
口試委員:徐錦志
口試委員(外文):Jiin-Jyh Shyu
口試日期:2014-07-22
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:82
中文關鍵詞:XPSUV-Vis-NIRP2O5-B2O3-V2O5玻璃RamanFTIR
外文關鍵詞:XPSUV-Vis-NIRP2O5-B2O3-V2O5 glassRamanFTIR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
成分選用氧化物P2O5 - B2O3 - ZnO - V2O5,均勻混和後以熔融急冷法製備玻璃,使用XRD檢測玻璃態;ICP檢測玻璃實際氧化物含量;UV-Vis-NIR光譜分析200-3000nm波段的穿透率。從實驗結果得知,在P2O5玻璃系統中加入少量V2O5影響吸光特性較B2O3玻璃明顯,特別是在800~1200nm。但在P2O5及B2O3混合玻璃中發現該成分更能吸收近紅外光,根據文獻近紅外光區域吸收和V4+的有關。經過XPS檢測,進行V4+及V5+的分峰結果,發現磷硼玻璃的V4+面積較大,其次為磷酸鹽玻璃,最後為硼酸鹽玻璃。根據結果V4+較容易存在於磷硼玻璃內。
Vanadium phosphate and Vanadium Borate glasses, having composition [(P2O5 or B2O3)50(ZnO)1-xV2O5x ], where x= 0,1,3,5 (mol%)were prepared by conventional melt quench method, and investigated by x-ray diffraction (XRD) and inductively coupled plasma spectroscopy (ICP),and UV-Vis-NIR spectrophotometer(200-3000nm).
The characteristic of NIR absorption in P2O5 glass system is higher then in B2O3 glass system especially wavelength 800~1200nm.But the characteristic of NIR absorption is the best in P2O5 and B2O3 glass system, I investigated by the X-ray photoelectron spectroscopy (XPS) to prove the results.I found more than one valence state of V ions being present.(V4+&V5+)
The V4+%area is larger then the V5+%area in P2O5-B2O3 glass system, the second is P2O5 glass system, the final is B2O3 glass system.
目錄
第1章 前言
第2章 文獻回顧與原理
2-1磷酸鹽玻璃結構與應用
2-2硼酸鹽玻璃之應用`
2-3 V2O5-P2O5玻璃
2-4 檢測釩的價數
2-4-1 XPS檢測
2-4-2 XANES及EXAFS
2-5 UV-Vis穿透率分析
2-6 有機發光二極體之簡介
2-6-1有機發光二極體顯示器
2-6-2 雷射封裝用玻璃膠
第3章 實驗流程
3-1 玻璃製備
3-2試片分析
第4章 結果與討論
4-1 ICP及XRD分析
4-2 UV-Vis-near IR光譜
4-3 XPS分析
4-3-1 V價數之分析(V2p3/2)
4-3-1 NBO/BO之分析(O1s)
4-4 Raman & FTIR
第5章 結論
參考文獻
1.A.M. Abdelghany, H.A. ElBatal, and L.K. Marei, “Optical and Shielding Behavior Studies of Vanadium-Doped Lead Borate Glasses,”Rad. Effects Defects in Solids: Incorporating Plasma Sci. Plasma Tech., 167[1] 49-58 (2012).
2.B. Mirhadi, and B. Mehdikhani, “Investigation of optical absorbance and crystallization of vanadium oxide in glasses”, J. Optoelectron. Adv. Mater., 13 [6] (2011) 679–683.
3.A. Majjane , A. Chahine , M. Et-tabirou ,B. Echchahed , T. Do, and P. Breen, “X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses,” Mater. Chem. Phys., 143 (2014) 779-787.
4.J.H. Son, S.K. Lee, H.B. Joo, and J. Park, “Glass frit and sealing method for element using the same,” US Patent 7863207(2011).
5.J.H. Son, S.K. Lee, and H.B. Joo, “Low melting point frit paste composition and sealing method for electric element using the same,” US Patent 7923393 (2011).
6.B.G. Aitken, J. Carberry, S. DeMartino , “Glass package that is hermetically sealed with a frit and method of fabrication,” US Patent 8063560 (2011).
7.G. Guo, Glass Technol. 39 (4) (1998) 138.
8.Y. B. Peng and D.E. Day, “High thermal expansion phosphate Glasses-Part I,” Glass Technology, 32 ( 1991) 166-173.
9.J.V. Wazer, “Phosphorus and its compounds,” New York, vol. 1 ( 1958).
10.C.H. Yeh, “Lead free, Low-MeltingSnO-MgO-P2O5 Glasses,” 大同大學碩士論文, July (2004 ).
11.R.K. Brow, C.A. Click, and T.M. Alam, “Modifier coordination and phosphate glass networks,” J. Non-Cryst. Solids, 274 ( 2000 ) 9-16.
12.T. Kanazawa, “Inorganic phosphate materials,” Elsevier, New York, (1989 ).
13.B. Zhang, Q. Chen, L. Song, H. Li and F. Hou, “The Influence of Sb2O3 Addition on the Properties of Low-melting ZnO–P2O5 Glasses,” J. Am. Ceram. Soc., 91 [6] ( 2008 ) 2036-2038.
14.K. El-Egili, H. Doweidar, Y.M. Moustafa, and I. Abbas, “Structure and some physical properties of PbO–P2O5 glasses,” Physica B., 339 (2003) 237-245.
15.Z.A. Talib, Y.N. Loh, H.A.A. Sidek, W.M.D.W. Yusoff, W.M.M. Yunus, and A.H. Shaari, “Optical absorption spectrum of (LiCl)x(P2O5)1−x glass,” Ceram. Inter., 30 (2004) 1715-1717.
16.G. S. Baskaran, G.L. Flower, D,K. Rao, and N. Veeraiah, “Structural role of In2O3 in PbO–P2O5–As2O3 glass system by means of spectroscopic and dielectric studies,” J. Am. Ceram. Soc., 431 ( 2007) 303-312.
17.A.M. Efimov, G Vera, and Pogareva, “Water-related IR absorption spectra for some phosphate and silicate glasses,” J. Non-Cryst. Solids, 275( 2000) 189-198.
18.J. Zarzycki, in: R.W. Cahn, P. Hasen, and E.J. Kramer (Eds.), Materials Science and Technology, vol. 9, VCH, Weinheim, 1991.
19.A. Mogus-Milankovic, D.E. Day, G.J. Long, G.K. Marasinghe, Phys. Chem. Glasses 37 (1996) 57.
20.A.L.Sauze and R. Marchand, “Chemically durable nitrided phosphate glasses resulting from nitrogen/oxygen substitution within PO4 tetrahedra,” J. Non-Cryst. Solids, 263&264 (2000) 285-292.
21.Y.-K. Lee and M. Tomozawa, “Effect of water content in phosphate glasses on slow crack growth rate,” J. Non-Cryst. Solids, 248 (1999) 203–210.
22.E.T.Y. Lee and E.R.M. Taylor, “Optical and thermal properties of binary calcium phosphate and barium phosphate glasses,” Opt. Mater., 28(2006) 200–206.
23.R.K. Brow, “Section 1. Structure Review:the structure of simplephosphate glasses,” J. Non-Cryst. Solids, 263&264 ( 2000 ) 1-28.
24.J.R. Van Wazer, “Structure and Properties of the Condensed Phosphate. II. A Theory of the Molecular Structure of Sodium Phosphate Glasses, ” J. A. Chem. Society, 72, 644-647 (1950)
25.U. Hoppe, N. P. Wyckoff, M.L. Schmitt, R.K. Brow, A. Schops, and A.C. Hannon “Structure of V2O5–P2O5 glasses by X-ray and neutron diffraction, ”J. Non-Cryst. Solids, 358 (2012) 328–336
26.A.M. Milankovic, M. Rajic, A. Drasner, and R. Trojko, “Crystallisation of Iron Phosphate Glasses, ” Phys. Chem. Glasses, 39 (2),(1998) 70-75.
27.R.K. Brow, “Review:The Structure of Simple Phosphate Glasses, ” J. Non-Cryst. Solids, 263&264, (2000) 1-28.
28.S.K. Lee, “Probing of bonding changes in B2O3 glasses at high pressure with inelastic X-ray scattering,” Nature Mater., 4 (2005) 851 – 854.
29.G.D. Khattak, N. Tabet, M.A. Salim, “X-ray photoelectron spectroscopic studies of vanadium-strontium-borate [(V2O5)x(SrO)0.2(B2O3)0.8−x] oxide glasses,” J. Electron. Spectrosc. Relat. Phenom. 133 (2003) 103–111.
30.Abdelilah Majjane, Abdelkrim Chahine, Mohamed Et-tabirou, Bousselham Echchahed, Trong-On Do, and Peter Mc Breen, “X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses,” Mater. Chem. Phys., 143 (2014) 779-787.
31.R. BACEWICZ, M. WASIUCIONEK, A. TWAROG, J. FILIPOWICZ, P. JOZWIAK, and J. GARBARCZYK, “A XANES study of the valence state of vanadium in lithium vanadate phosphate glasses,” J. Mater. Sci. 40 (2005) 4267– 4270.
32.M. Faiz, A. Mekkia, B.S. Mun, and Z. Hussain, “Investigation of vanadium–sodium silicate glasses using XANES spectroscopy,” J. Electron. Spectrosc. Relat. Phenom. 154 (2007) 60–62.
33.M.A.Nassar, and N.A.Ghoneim, “Vanadium contribution in different glasses in view of the ligand field theory,” J. Non-Cryst. Solids 46 (1981) 181-195.
34.C.W. Tang and S.A. VanSlyke, “Organic Electroluminescent Diodes,”App. Phys. Lett., 51[12] 913–15 (1987).
35.M.D.J. Auch, O.K. Soo, G. Ewald, and C.S. Jin, “Ultrathin Glass for Flexible OLED Application,”Thin Solid Films, 417, 47–50 (2002).
36.A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, “Flexible OLED Display Using Plastic Substrates,”IEEE J. Selected Topics in Quantum Electronics, 10[1] 107-14 (2004).
37.Y.G. Lee, Y.H. Choi, and I.S. Kee, “Thin-Film Encapsulation of Top-Emission Organic Light-Emitting Devices with Polyurea/Al2O3 Hybrid Multi-Layers,”Org. Electron., 10, 1352-55 (2009).
38.P.E. Burrows, V. Bulovic, and S.R. Forrest, “Reliabilityand Degradation of Organic Light Emitting Devices,”Appl. Phys. Lett., 65[23] 2922-24 (1994).
39.Z.D. Popovic and H. Aziz, “Reliability andDegradation of Small Molecule-Based Organic Light-Emitting Devices (OLEDs), IEEE J. on Selected Topics in Quantum Electronics, 8[2] 362-71 (2002).
40.B.G. Aitken, J.P. Carberry, S.E. DeMartino, and H.E. Hagy et. al., “GlassPackage That is Hermetically Sealed with a Frit and Method of Fabrication,” US Patent 6998776 (2006).
41.H.D. Boek, J.W. Botelho, and J.A. Howles, “Sealed Glass Package,” US Patent 8147976 (2012).
42.D. Kim, C. Hwang, D. Gwoo, T. Kim, Y. Kim, N. Kim, and B. Ki Ryu, “Synthesis and Characterization of CdS Nanocrystals in a Novel Phosphate Glass,” J. Electron. Mater., 7[4] 309-312(2011).
43.A.M. Efimov, “IR Findamental Spectra and Structure of Pyrophosphate Glasses Along the 2ZnO‧P2O5-2Me2O‧P2O5 Join (Me Being Na and Li),” J. Non-Cryst. Solids, 209, 209-226 (1997).
44.A. Moguš-Milanković, A. Gajović, A. Šantić, and D.E. Day, “Structure of Sodium Phosphate Glasses Containing Al2O3 and/or Fe2O3. Part I,” J. Non-Cryst. Solids, 289, 204-213 (2001).
45.T.Y. Wei, Y. Hu, and L.G. Hwa, “Structure and Elastic Properties of Low-Temperature Sealing Phosphate Glasses,” J. Non-Cryst. Solids, 288, 140-147 (2001).
46.E. Metwalli and R.K. Brow, “Modifier Effects on the Properties and Structures of Aluminophosphate Glasses,” J. Non-Cryst. Solids, 289, 113-122 (2001).
47.J.Y. Ding, S.W. Yung, and P.Y. Shih, “Effect of Al2O3 on Properties and Structure of Lead Zinc Phosphate Glasses,” Phys. Chem. Glasses, 43, 300-305 (2002).
48.S. C. Baidoc, S. Filip and I. Ardelean, “FT – IR AND RAMAN SPECTROSCOPIC STUDIES OF xAg2O‧(100-x)[B2O3‧As2O3] GLASS SYSTEM,” Mod. Phys. Lett. B 24, 51 (2010).
49.N. Vedeanu, O. Cozar, I. Ardelean, and V. Ioncu, “Raman and EPR investigation of some lead-phosphate glasses with vanadium and copper ions” J. Adv. Mater. 9, 844 – 847 (2007).
50. A. Hameed, Md. Shareefuddin, S. Laksmi Srinivasa Rao, G. Ramadevudu and M. Narasimha Chary, “FTIR and EPR studies of Vanadium ion doped in ZnO-Li2O-Na2O-K2O-B2O3 Glasses,” J. Sci. Eng. Res. 5[3], (2014)
51.C. Sanchez, J. Livage and G. Lucazeau, “Infrared and Raman Study of Amorphous V2O5,” J. Raman Spectrosc. 12,[1], (1982)
52.Se-Hee Lee, Hyeonsik M. Cheong, Maeng Je Seong, Ping Liu, C. Edwin Tracy, Angelo Mascarenhas, J. Roland Pitts, Satyen K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films”Solid State Ionics, 165, 111-116 (2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔